(3.235.11.178) 您好!臺灣時間:2021/02/26 03:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴昱蓉
研究生(外文):Yu-Jung Lai
論文名稱:以人工齲齒模型來探討抗菌樹脂填補系統於牙釉質及牙根牙本質之影響
論文名稱(外文):Effects of Antibacterial Composite Filling Systems on Enamel and Root Dentin by Using Artificial Caries Model
指導教授:姜昱至
口試日期:2017-07-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:臨床牙醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:91
中文關鍵詞:複合樹脂牙科黏著劑再礦化與去礦化溶液備製與循環口腔生物膜環境掃頻光源式光學同調斷層掃瞄微米級電腦斷層掃描造影系統
外文關鍵詞:Composite resinBonding agentDe/Re-mineralization pH-cyclingOral biofilm reactorSwept-source OCTMicro-CT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今的牙醫材料科學不斷的發展與進步。近年來,複合樹脂因為美觀的需求與考量,逐漸成為臨床填補的主要材料。由於在臨床上最常見之填補物重新填補置換原因為繼發性齲齒,而使其應用受到限制。因此理想的牙科修復填補材料,不僅可以修復牙齒硬組織,而且具有抗菌性。繼發性齲齒是由於材料邊緣微滲漏(micro-leakage)而引起之細菌存在於牙本質小管中,或複合樹脂材料與牙齒硬組織之黏附不良而導致,以上都有可能導致牙髓感染並且引起術後之其他併發症。因此,牙科修復填補材料之抗菌性質具有重要的臨床意義,並且可以使醫師在做牙齒修形時以較小侵入性的方式來復形治療。
本實驗目的為評估修復填補材系統之抵抗去礦化能力,使用了掃頻光源式光學同調斷層掃瞄(Swept-source OCT, SS-OCT)與微米級電腦斷層掃描造影系統(Micro-CT),以非破壞性之方法來針對樣本牙釉質與牙根牙本質區域來作觀察。
本研究之樣本製備為:64塊於齒頸部的地方切出體積6mm × 6mm × 2mm之樣本。於樣本中央,齒頸部牙釉質/牙根牙本質交界之表面備製一直徑2mm、深2mm圓柱體之窩洞,填入兩種不同的複合樹脂材料,分別為 Beautifil II(含玻璃表面反應填料, S-PRG filler)和 Estelite,與兩種牙科黏著劑,分別為Single Bond Universal和FL Bond II(含含玻璃表面反應填料)。
本研究分為兩部分進行人工齲齒實驗模型:
第一部分:再礦化與去礦化之酸鹼循環(pH-cycling)實驗模型之建立。
第二部分:口腔生物膜環境模型(Oral Biofilm Reactor)之建立。
我們以定性以及定量下,以微米級電腦斷層掃描、掃頻光源式光學同調斷層掃瞄兩種方式,觀察樣本之牙釉質與牙根牙本質表面變化,除此之外更利用電腦軟體CT-An及Image J定量分析計算出去礦化體積百分比與平均病灶深度,以及做微硬度(Micro-hardness)測試與分析。
實驗結果顯示,含有玻璃表面反應填料之牙科修復填補材料,經過去礦化過程後,不論是牙釉質或是牙根牙本質區域,相較於不含玻璃表面反應填料之牙科修復填補材料,較有抵抗去礦化之能力,也就是具有更好的抗齲能力。並且我們比較了掃頻光源式光學同調斷層掃瞄與微米級電腦斷層掃描兩種影像分析系統,掃頻光源式光學同調斷層掃瞄對於觀察去礦化表面更方便簡單,結果顯示兩種方式具有高度相關性。
綜合以上結論,本研究證實掃頻光源式光學同調斷層掃瞄不論在研究或是臨床之運用是一個很實用的分析診斷工具。並且本實驗結果證實含有玻璃表面反應填料之牙科修復填補材料,較有抵抗去礦化之能力,也就是具有更好的抗齲能力,因此在臨床上的應用有助於預防繼發性齲齒之潛力。
In dentistry nowadays, constant development and improvement in material science has been noticed. The use of dental composite resin material is increasing dramatically in recent years due to the esthetic demand. The ideal restorative material would not only perfectly restore hard dental tissues, but also possess antibacterial properties, as the most common reason for the filling replacement is secondary caries. Secondary caries is caused by bacterial infection/accumulation due to micro-leakage, and further bacteria presence in dentinal tubules. The poor adhesion of composite material to hard dental tissues would aggravate the situation. All of the above may lead to pulp infection and cause postoperative complications. Antibacterial properties of restorative materials are of major clinical importance and would allow for less invasive preparation on hard dental tissue.
The object of this study was to evaluate the anti-demineralization/anti-caries ability of antibacterial composite filling systems on enamel and root dentin by using non-destructive methods: Swept-source OCT(SS-OCT)and micron-computerized tomography (Micro-CT).
This study was carried out in two parts for artificial caries models setting
Part I: pH-cycling model.
Part II :Oral Biofilm Reactor model.
In this study, Sixty-four specimens, 6mm x 6mm x 2mm enamel/root dentin block with a cylinder cavity for each, were divided into two groups (n = 32) : pH-cycling group and the OBR group. Cavities were filled with Beautifil II composite resin or Estelite composite resin. Dentin bonding agents used in this study were Single Bond Universal and FL Bond II.
We qualitatively and quantitatively examined the demineralization lesions of surrounding enamel and root dentin portion by Micro-CT and SS-OCT. We defined the lesion type based on the SS-OCT images. Micro-hardness test was tested to verify the changes of surrounding affected tissue.
With the limited results, we can conclude that S-PRG filler-containing composite resin can effectively resist demineralization process and has the potential to prevent caries in enamel and root dentin regions. S-PRG filler-containing composite resin has good potential for caries prevention. Moreover, SS-OCT is a convenient method for examining demineralization lesions, and well correlated to Micro-CT in both tooth substrates. 

目錄
中文摘要 I
Abstract III
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 研究假說 3
1.4 論文架構 3
1.5 實驗流程圖 4
第二章 文獻回顧 5
2.1 齲齒 5
2.2 牙科用複合樹脂 8
2.3 牙科用黏著劑 8
2.4 抗齲齒成分之原理與應用 9
2.5 掃頻光源式光學同調斷層掃瞄(Swept-Source OCT)應用 15
2.6 微米級電腦斷層掃描造影系統(Micro CT) 應用 16
第三章 實驗材料與方法 18
3.1 建立人工齲齒模型 18
3.1.1 牙齒收集與樣本備製 18
3.1.2 材料填補與分組 18
3.1.3 再礦化與去礦化溶液備製(pH-cycling) 19
3.1.4 建立口腔生物膜環境(Oral Biofilm Reactor, OBR) 20
3.2 測量與分析方法 22
3.2.1 微米級電腦斷層掃描造影與分析 22
3.2.2 掃頻光源式光學同調斷層掃瞄分析 23
3.3 微硬度(Micro-hardness)測試 24
3.4 統計方法 24
第四章 實驗結果 26
4.1 再礦化與去礦化溶液備製與循環(pH-cycling)模型 26
4.1.1 掃頻光源式光學同調斷層掃瞄(SS-OCT)分析 26
4.1.2 微米級電腦斷層掃描造影系統(Micro-CT)分析 28
4.1.3 pH-cycling SS-OCT與Micro-CT 影像相關性分析 28
4.1.4 樣本周邊齒質表面微硬度變化測試 29
4.2 口腔生物膜環境模型 30
4.2.1 掃頻光源式光學同調斷層掃瞄(SS-OCT)分析 30
4.2.2 微米級電腦斷層掃描造影系統(Micro-CT)分析 32
4.2.3 OBR SS-OCT與Micro-CT 影像相關性分析 33
4.3 pH-cycling與OBR相關性分析 34
第五章 討論 35
5.1 含氟材料與齲齒進展之探討 35
5.1.1 再礦化與去礦化酸鹼循環實驗模型討論 35
5.1.2 口腔生物模環境模型 38
5.2 SS-OCT與Micro-CT 影像相關性分析討論 41
5.3 人工齲齒模型分析討論 41
5.4 臨床應用 42
第六章 結論 44
第七章 未來研究方向 46
第八章 參考文獻 47
圖附錄 58
表附錄 87

圖目錄
圖3-1 本實驗使用之慢速切割機 55
圖3-2 細菌預先培養過程 55
圖3-3 細菌培養過程 56
圖3-4 細菌懸浮液製備過程 56
圖3-5 口腔生物膜系統 57
圖3-6 口腔生物膜運作系統pH測定 57
圖3-7 本實驗所使用之微米級電腦斷層掃描 58
圖3-8本實驗所使用的SS-OCT 58
圖3-9 本實驗所使用的之微硬度計 59
圖3-10 pH-cycling前/後之微硬度測試位置 59
圖3-11 維克氏硬度的測試原理。 60
圖4-1 pH-cycling循環後,BEF/SBU之SS-OCT影像 61
圖4-2 pH-cycling循環後,EST/SBU病灶之分布情形 62
圖4-3 pH-cycling循環後,BEF/FL病灶之分布情形 63
圖4-4 pH-cycling循環後,EST/FL病灶之分布情形 64
圖4-5 pH-cycling循環,牙根牙本質區域去礦化的形態示意 65
圖4-6 pH-cycling循環後,SS-OCT影像分析下牙釉質區域Lesion深度 65
圖4-7 pH-cycling循環後,SS-OCT影像分析下牙根牙本質區域Lesion深度 66
圖4-8 pH-cycling,SS-OCT分析下牙釉質/牙根牙本質之平均病灶深 66
圖4-9 pH-cycling循環後,複合樹脂填補物影響齒質抵抗去礦化分析 67
圖4-10 pH-cycling循環後,黏著劑影響齒質抵抗去礦化分析 67
圖4-11 pH-cycling循環後,Micro-CT分析下牙釉質/牙根牙本質之平均病灶深 68
圖 4-12 牙釉質區域,經由pH-cycling去礦化,SS-OCT影像與Micro-CT影像相關性 68
圖4-13 牙根牙本質區域,經由pH-cycling去礦化SS-OCT影像與Micro-CT 影像相關性 69
圖4-14 八天去礦化/再礦化循環 69
圖4-15 pH-cycling循環後,牙釉質微硬度之結果 70
圖4-16 pH-cycling循環後,牙根牙本質微硬度之結果 70
圖4-17 pH-cycling循環後,微硬度改變量百分比圖 71
圖4-18 OBR循環後,BEF/SBU病灶之分布情形 72
圖4-19 OBR循環後,EST/SBU病灶之分布情形 73
圖4-20 OBR循環後,BEF/FL病灶之分布情形 74
圖4-21 OBR循環後,EST/FL病灶之分布情形 75
圖4-22 OBR作用,牙根牙本質區域去礦化的形態示意 76
圖4-23 OBR作用,SS-OCT影像分析下牙釉質區域Lesion深度 76
圖4-24 OBR作用,SS-OCT影像分析下牙根牙本質Lesion深度 77
圖4-25 OBR作用後,SS-OCT分析下牙釉質/牙根牙本質之平均病灶深度 77
圖4-26 OBR作用後,複合樹脂填補物影響齒質抵抗去礦化分析 78
圖4-27 OBR作用後,複合樹脂填補物影響齒質抵抗去礦化分析 78
圖4-28 Micro-CT 2D/3D去礦化之影像 79
圖4-29 OBR作用後,Micro-CT分析下牙釉質/牙根牙本質之平均病灶深 80
圖4-30 VOI 示意圖 80
圖4-31 OBR作用,Micro-CT分析牙釉質區域之去礦化體積百分比 81
圖 4-32 牙釉質區域,經由OBR去礦化SS-OCT影像與Micro-CT 影像相關性 81
圖 4-33 牙根牙本質區域,經由OBR去礦化SS-OCT影像與Micro-CT 影像相關性 82
圖4-34 在牙釉質區域,兩種去礦化模型相關性 82
圖4-35 在牙根牙本質區域,兩種去礦化模型相關性 83

表目錄
表 3-2 BEAUTIFIL之材料安全資料表 84
表 3-3 ESTELITE之材料安全資料表 85
表 3-4 黏著劑成分表 85
表 3-5 樣本分組 86
表 4-1 去礦化型態定義與分類 86
表 4-2 經過pH-cycling循環,牙根牙本質區域去礦化之分類表 87
表 4-3 經過pH-cycling循環,牙釉質與牙根牙本質微硬度之結果 87
表 4-4 經過OBR,牙根牙本質區域去礦化之分類表 88
[1] WHO Oral Health Country/Area Profile Programme.
[2] 衛生福利部國民口腔健康第一期五年計畫,民國95年五月.
[3] J.L. Drummond, Degradation, fatigue, and failure of resin dental composite materials, Journal of dental research 87(8) (2008) 710-719.
[4] H. Nokhbatolfoghahaie, M. Alikhasi, N. Chiniforush, F. Khoei, N. Safavi, B.Y. Zadeh, Evaluation of accuracy of DIAGNOdent in diagnosis of primary and secondary caries in comparison to conventional methods, Journal of lasers in medical sciences 4(4) (2013) 159.
[5] S. Kositbowornchai, C. Sukanya, T. Tidarat, T. Chanoggarn, Caries detection under composite restorations by laser fluorescence and digital radiography, Clinical oral investigations 17(9) (2013) 2079-2084.
[6] C. Gonzalez-Cabezas, M. Fontana, D. Gomes-Moosbauer, G. Stookey, Early detection of secondary caries using quantitative, light-induced fluorescence, OPERATIVE DENTISTRY-UNIVERSITY OF WASHINGTON- 28(4) (2003) 415-422.
[7] D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, Optical coherence tomography, Science (New York, NY) 254(5035) (1991) 1178.
[8] Y. Shimada, A. Sadr, Y. Sumi, J. Tagami, Application of optical coherence tomography (OCT) for diagnosis of caries, cracks, and defects of restorations, Current oral health reports 2(2) (2015) 73-80.
[9] Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, Y. Sumi, Noninvasive cross‐sectional imaging of proximal caries using swept‐source optical coherence tomography (SS‐OCT) in vivo, Journal of biophotonics 7(7) (2014) 506-513.
[10] J.D. Featherstone, The science and practice of caries prevention, Journal of the American Dental Association (1939) 131(7) (2000) 887-99.
[11] W.J. Loesche, Role of Streptococcus mutans in human dental decay, Microbiological reviews 50(4) (1986) 353-80.
[12] S. Hamada, H.D. Slade, Biology, immunology, and cariogenicity of Streptococcus mutans, Microbiological reviews 44(2) (1980) 331-84.
[13] J.M. Tanzer, J. Livingston, A.M. Thompson, The microbiology of primary dental caries in humans, Journal of dental education 65(10) (2001) 1028-37.
[14] N. Takahashi, B. Nyvad, The role of bacteria in the caries process: ecological perspectives, Journal of dental research 90(3) (2011) 294-303.
[15] J.D. Featherstone, Remineralization, the natural caries repair process--the need for new approaches, Advances in dental research 21(1) (2009) 4-7.
[16] M.A. Buzalaf, A.R. Hannas, A.C. Magalhaes, D. Rios, H.M. Honorio, A.C. Delbem, pH-cycling models for in vitro evaluation of the efficacy of fluoridated dentifrices for caries control: strengths and limitations, Journal of applied oral science : revista FOB 18(4) (2010) 316-34.
[17] S. Imazato, K. Ikebe, T. Nokubi, S. Ebisu, A.W. Walls, Prevalence of root caries in a selected population of older adults in Japan, Journal of oral rehabilitation 33(2) (2006) 137-43.
[18] M. Heijnsbroek, S. Paraskevas, G.A. Van der Weijden, Fluoride interventions for root caries: a review, Oral health & preventive dentistry 5(2) (2007) 145-52.
[19] J. Arends, J. Christoffersen, J.A. Buskes, J. Ruben, Effects of fluoride and methanehydroxydiphosphate on enamel and on dentine demineralization, Caries research 26(6) (1992) 409-17.
[20] J.M. ten Cate, M.J. Buijs, J.J. Damen, pH-cycling of enamel and dentin lesions in the presence of low concentrations of fluoride, European journal of oral sciences 103(6) (1995) 362-7.
[21] I.A. Mjor, J.E. Moorhead, J.E. Dahl, Reasons for replacement of restorations in permanent teeth in general dental practice, International dental journal 50(6) (2000) 361-6.
[22] S.S. Mo, W. Bao, G.Y. Lai, J. Wang, M.Y. Li, The microfloral analysis of secondary caries biofilm around Class I and Class II composite and amalgam fillings, BMC infectious diseases 10 (2010) 241.
[23] R. Thomas, H. Van Der Mei, M. Van Der Veen, J. De Soet, M. Huysmans, Bacterial composition and red fluorescence of plaque in relation to primary and secondary caries next to composite: an in situ study, Oral microbiology and immunology 23(1) (2008) 7-13.
[24] M. Svanberg, I. Mjör, D. Ørstavik, Mutans streptococci in plaque from margins of amalgam, composite, and glass-ionomer restorations, Journal of dental research 69(3) (1990) 861-864.
[25] I. Nedeljkovic, W. Teughels, J. De Munck, B. Van Meerbeek, K.L. Van Landuyt, Is secondary caries with composites a material-based problem?, Dental Materials 31(11) (2015) e247-e277.
[26] E.S. Grossman, J.M. Matejka, Amalgam restoration and in vitro caries formation, The Journal of prosthetic dentistry 73(2) (1995) 199-209.
[27] N. Kuper, F. van de Sande, N. Opdam, E. Bronkhorst, J. De Soet, M. Cenci, M. Huysmans, Restoration materials and secondary caries using an in vitro biofilm model, Journal of dental research 94(1) (2015) 62-68.
[28] K. Rosin-Grget, K. Peros, I. Sutej, K. Basic, The cariostatic mechanisms of fluoride, Acta medica academica 42(2) (2013) 179-88.
[29] N.R. Mohammed, N.W. Kent, R.J. Lynch, N. Karpukhina, R. Hill, P. Anderson, Effects of fluoride on in vitro enamel demineralization analyzed by (1)(9)F MAS-NMR, Caries research 47(5) (2013) 421-8.
[30] 郭敏光, 江顯雄, 含氟無填料 Bis-GMA 樹脂之氟離子釋出能力, 中華牙醫學會雜誌 16(4) (1997) 227-41.
[31] P. Totiam, C. Gonzalez-Cabezas, M.R. Fontana, D.T. Zero, A new in vitro model to study the relationship of gap size and secondary caries, Caries research 41(6) (2007) 467-73.
[32] O. Feuerstein, S. Matalon, H. Slutzky, E.I. Weiss, Antibacterial properties of self-etching dental adhesive systems, The Journal of the American Dental Association 138(3) (2007) 349-354.
[33] J.O. Gondim, C. Duque, J. Hebling, E.M. Giro, Influence of human dentine on the antibacterial activity of self-etching adhesive systems against cariogenic bacteria, journal of dentistry 36(4) (2008) 241-248.
[34] C. Esteves, C. Ota-Tsuzuki, A. Reis, J. Rodrigues, Antibacterial activity of various self-etching adhesive systems against oral streptococci, Operative dentistry 35(4) (2010) 448-453.
[35] C. Farrugia, J. Camilleri, Antimicrobial properties of conventional restorative filling materials and advances in antimicrobial properties of composite resins and glass ionomer cements—a literature review, Dental Materials 31(4) (2015) e89-e99.
[36] W.H. Organization,
Fluorides and Oral Health., Technical Report Series No. 846. Geneva: WHO. (1994).
[37] W.H. Organization, Inadequate or excess fluoride: a major public health concern. , Geneva: WHO (2010).
[38] M.A.R. Buzalaf, J.P. Pessan, H.M. Honório, J.M. Ten Cate, Mechanisms of action of fluoride for caries control, Fluoride and the oral environment, Karger Publishers2011, pp. 97-114.
[39] I. Hamilton, Biochemical effects of fluoride on oral bacteria, Journal of dental research 69(2_suppl) (1990) 660-667.
[40] K. Rošin-Grget, I. Linčir, Current concept on the anticaries fluoride mechanism of the action, Collegium antropologicum 25(2) (2001) 703-712.
[41] S.E. Bishara, A.W. Ostby, White spot lesions: formation, prevention, and treatment, Seminars in Orthodontics, Elsevier, 2008, pp. 174-182.
[42] H. Aghoutan, S. Alami, F. El Quars, S. Diouny, F. Bourzgui, White Spots Lesions in Orthodontic Treatment and Fluoride—Clinical Evidence, NEW TREATMENTS IN ORTHODONTICS AND MAXILLOFACIAL CONDITIONS (2015) 57.
[43] R. Belli, C. Rahiotis, E.W. Schubert, L.N. Baratieri, A. Petschelt, U. Lohbauer, Wear and morphology of infiltrated white spot lesions, Journal of dentistry 39(5) (2011) 376-385.
[44] H. Margolis, E. Moreno, Physicochemical perspectives on the cariostatic mechanisms of systemic and topical fluorides, Journal of dental research 69(2_suppl) (1990) 606-613.
[45] D. White, G. Nancollas, Physical and chemical considerations of the role of firmly and loosely bound fluoride in caries prevention, Journal of dental research 69(2_suppl) (1990) 587-594.
[46] O. Fejerskov, M.J. Larsen, A. Richards, V. Baelum, Dental tissue effects of fluoride, Advances in dental research 8(1) (1994) 15-31.
[47] B. Øgaard, CaF2 formation: cariostatic properties and factors of enhancing the effect, Caries research 35(Suppl. 1) (2001) 40-44.
[48] A. Dijkman, P. De Boer, J. Arends, In vivo investigation on the fluoride content in and on human enamel after topical applications, Caries research 17(5) (1983) 392-402.
[49] J. Ten Cate, J. Featherstone, Physicochemical aspects of fluoride-enamel interactions, Fluoride in dentistry 2 (1996) 252-72.
[50] Y. MUKAI, K. TOMIYAMA, T. SHIIYA, K. KAMIJO, F. FUJINO, T. TERANAKA, Formation of inhibition layers with a newly developed fluoride-releasing all-in-one adhesive, Dental materials journal 24(2) (2005) 172-177.
[51] S. Ito, M. Iijima, M. Hashimoto, N. Tsukamoto, I. Mizoguchi, T. Saito, Effects of surface pre-reacted glass-ionomer fillers on mineral induction by phosphoprotein, Journal of dentistry 39(1) (2011) 72-79.
[52] Y. Fujimoto, M. Iwasa, R. Murayama, M. Miyazaki, A. Nagafuji, T. Nakatsuka, Detection of ions released from S-PRG fillers and their modulation effect, Dental materials journal 29(4) (2010) 392-397.
[53] P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, T. Nakamura, T. Yamamuro, Effects of ions in aqueous media on hydroxyapatite induction by silica gel and its relevance to bioactivity of bioactive glasses and glass‐ceramics, Journal of Applied Biomaterials 4(3) (1993) 221-229.
[54] M. Tanahashi, T. Yao, T. Kokubo, M. Minoda, T. Miyamoto, T. Nakamura, T. Yamamuro, Apatite coated on organic polymers by biomimetic process: improvement in its adhesion to substrate by NaOH treatment, Journal of Applied Biomaterials 5(4) (1994) 339-347.
[55] M. Gandolfi, S. Chersoni, G. Acquaviva, G. Piana, C. Prati, R. Mongiorgi, Fluoride release and absorption at different pH from glass-ionomer cements, Dental materials 22(5) (2006) 441-449.
[56] B. Czarnecka, J.W. Nicholson, Ion release by resin-modified glass-ionomer cements into water and lactic acid solutions, Journal of dentistry 34(8) (2006) 539-543.
[57] S. Seitaro, H. Kotake, R.J. Scougall-Vilchis, S. Ohashi, M. Hotta, S. Horiuchi, K. Hamada, K. Asaoka, E. Tanaka, K. Yamamoto, Antibacterial activity of composite resin with glass-ionomer filler particles, Dental materials journal 29(2) (2010) 193-198.
[58] D. Tamura, S. Saku, K. Yamamoto, M. Hotta, Adsorption of salivary protein to resin composite containing S-PRG filler, Jpn J Conserv Dent 53 (2010) 191-206.
[59] T. Idono, S. Saku, K. Yamamoto, The application of glass filler with fluorine to tooth coating materials, J Conserv Dent 52 (2009) 237-247.
[60] M. Hirose, Analysis of film layer formed on S-PRG resin surface, JAPANESE JOURNAL OF CONSERVATIVE DENTISTRY 49(2) (2006) 309.
[61] K. Yoshida, S. Saku, S. Ohashi, K. Yamamoto, Anti-plaque of new fluoride release adhesion system, Jpn J Conserv Dent 51 (2008) 493-501.
[62] M. Herrera, P. Carrion, P. Baca, J. Liebana, A. Castillo, In vitro antibacterial activity of glass-ionomer cements, Microbios 104(409) (2000) 141-148.
[63] J. Van Dijken, S. Kalfas, V. Litra, A. Oliveby, Fluoride and Mutans Streptococci Levels in Plaque on Aged Restorations of Resin-Modified Glass lonomer Cement, Compomer and Resin Composite, Caries research 31(5) (1997) 379-383.
[64] X. Xu, J.O. Burgess, Compressive strength, fluoride release and recharge of fluoride-releasing materials, Biomaterials 24(14) (2003) 2451-2461.
[65] R.C. Fraga, J. Siqueira, M. de Uzeda, In vitro evaluation of antibacterial effects of photo-cured glass ionomer liners and dentin bonding agents during setting, The Journal of prosthetic dentistry 76(5) (1996) 483-486.
[66] M. Herrera, A. Castillo, M. Bravo, J. Liebana, P. Carrion, Antibacterial activity of resin adhesives, glass ionomer and resin-modified glass ionomer cements and a compomer in contact with dentin caries samples, Operative dentistry 25(4) (2000) 265-269.
[67] F. Dabsie, G. Gregoire, M. Sixou, P. Sharrock, Does strontium play a role in the cariostatic activity of glass ionomer?: Strontium diffusion and antibacterial activity, journal of dentistry 37(7) (2009) 554-559.
[68] B. Van Meerbeek, J. De Munck, Y. Yoshida, S. Inoue, M. Vargas, P. Vijay, K. Van Landuyt, P. Lambrechts, G. Vanherle, Adhesion to enamel and dentin: current status and future challenges, OPERATIVE DENTISTRY-UNIVERSITY OF WASHINGTON- 28(3) (2003) 215-235.
[69] M. Yoshiyama, Y. Nishitani, T. Itota, F.R. Tay, R.M. Carvalho, D.H. Pashley, Bonding ability of adhesive resins to caries-affected and caries-infected dentin, Journal of Applied Oral Science 12(3) (2004) 171-176.
[70] H. Linlin, C. EDWARD, A. OKAMOTO, M. IWAKU, A comparative study of fluoride-releasing adhesive resin materials, Dental materials journal 21(1) (2002) 9-19.
[71] K. Ikemura, F. Tay, Y. Kouro, T. Endo, M. Yoshiyama, K. Miyai, D.H. Pashley, Optimizing filler content in an adhesive system containing pre-reacted glass-ionomer fillers, Dental Materials 19(2) (2003) 137-146.
[72] K. Ikemura, F.R. Tay, T. Endo, D.H. Pashley, A review of chemical-approach and ultramorphological studies on the development of fluoride-releasing dental adhesives comprising new pre-reacted glass ionomer (PRG) fillers, Dental Materials Journal 27(3) (2008) 315-339.
[73] J. Ten Cate, Remineralization of caries lesions extending into dentin, Journal of dental research 80(5) (2001) 1407-1411.
[74] J. Featherstone, Fluoride, remineralization and root caries, American journal of dentistry 7(5) (1994) 271-274.
[75] A. Kuramoto, S. Imazato, A. Walls, S. Ebisu, Inhibition of root caries progression by an antibacterial adhesive, Journal of dental research 84(1) (2005) 89-93.
[76] S. Toba, P.N. Pereira, T. Nikaido, J. Tagami, Effect of topical application of fluoride gel on artificial secondary caries inhibition, Int Chin J Dent 3 (2003) 53-61.
[77] J.L. Ferracane, J.C. Mitchem, J.D. Adey, Fluoride penetration into the hybrid layer from a dentin adhesive, American journal of dentistry 11(1) (1998) 23-28.
[78] A.M. Zysk, F.T. Nguyen, A.L. Oldenburg, D.L. Marks, S.A. Boppart, Optical coherence tomography: a review of clinical development from bench to bedside, Journal of biomedical optics 12(5) (2007) 051403-051403-21.
[79] S.J. Riederer, Current technical development of magnetic resonance imaging, IEEE Engineering in Medicine and Biology Magazine 19(5) (2000) 34-41.
[80] M. Born, E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, Elsevier1980.
[81] A. Fercher, K. Mengedoht, W. Werner, Eye-length measurement by interferometry with partially coherent light, Optics letters 13(3) (1988) 186-188.
[82] H. Nakagawa, A. Sadr, Y. Shimada, J. Tagami, Y. Sumi, Validation of swept source optical coherence tomography (SS-OCT) for the diagnosis of smooth surface caries in vitro, Journal of dentistry 41(1) (2013) 80-89.
[83] M. Maolinbay, Y. El‐Mohri, L. Antonuk, K.W. Jee, S. Nassif, X. Rong, Q. Zhao, Additive noise properties of active matrix flat‐panel imagers, Medical physics 27(8) (2000) 1841-1854.
[84] R. De Santis, F. Mollica, D. Prisco, S. Rengo, L. Ambrosio, L. Nicolais, A 3D analysis of mechanically stressed dentin–adhesive–composite interfaces using X-ray micro-CT, Biomaterials 26(3) (2005) 257-270.
[85] L. Torlakovic, I. Olsen, C. Petzold, H. Tiainen, B. Øgaard, Clinical color intensity of white spot lesions might be a better predictor of enamel demineralization depth than traditional clinical grading, American Journal of Orthodontics and Dentofacial Orthopedics 142(2) (2012) 191-198.
[86] Q. Zhi, E. Lo, A. Kwok, An in vitro study of silver and fluoride ions on remineralization of demineralized enamel and dentine, Australian dental journal 58(1) (2013) 50-56.
[87] G.R. Davis, A.N. Evershed, D. Mills, Quantitative high contrast X-ray microtomography for dental research, Journal of dentistry 41(5) (2013) 475-482.
[88] B. Liu, E. Lo, C. Li, Effect of silver and fluoride ions on enamel demineralization: a quantitative study using micro‐computed tomography, Australian dental journal 57(1) (2012) 65-70.
[89] R.M.O. Argenta, C.P.M. Tabchoury, J.A. Cury, A modified pH-cycling model to evaluate fluoride effect on enamel demineralization, Pesquisa Odontológica Brasileira 17(3) (2003) 241-246.
[90] Y. Natsume, S. Nakashima, A. Sadr, Y. Shimada, J. Tagami, Y. Sumi, Estimation of lesion progress in artificial root caries by swept source optical coherence tomography in comparison to transverse microradiography, Journal of biomedical optics 16(7) (2011) 071408-071408-8.
[91] A. Gwinnett, A. Matsui, A study of enamel adhesives: the physical relationship between enamel and adhesive, Archives of Oral Biology 12(12) (1967) 1615IN41-1620IN46.
[92] M. Buonocore, A. Matsui, A. Gwinnett, Penetration of resin dental materials into enamel surfaces with reference to bonding, Archives of Oral Biology 13(1) (1968) 61IN1769IN19-67IN1870IN20.
[93] G.C. Lopes, D.G. Thys, P. Klaus, G. Oliveira, N. Widmer, Enamel acid etching: a review, Compendium of continuing education in dentistry (Jamesburg, NJ: 1995) 28(1) (2007) 18-24; quiz 25, 42.
[94] C. Sabatini, Effect of phosphoric acid etching on the shear bond strength of two self-etch adhesives, Journal of Applied Oral Science 21(1) (2013) 56-62.
[95] P. Makishi, C. André, A. Ayres, A. Martins, M. Giannini, Effect of storage time on bond strength and nanoleakage expression of universal adhesives bonded to dentin and etched enamel, Operative dentistry 41(3) (2016) 305-317.
[96] W.L.d.O. da Rosa, E. Piva, A.F. da Silva, Bond strength of universal adhesives: a systematic review and meta-analysis, Journal of dentistry 43(7) (2015) 765-776.
[97] R.J.S. VILCHIS, S. Yamamoto, N. Kitai, M. Hotta, K. Yamamoto, Shear bond strength of a new fluoride-releasing orthodontic adhesive, Dental materials journal 26(1) (2007) 45-51.
[98] A. Preston, L. Mair, E. Agalamanyi, S. Higham, Fluoride release from aesthetic dental materials, Journal of oral rehabilitation 26(2) (1999) 123-129.
[99] G. Vale, C. Tabchoury, A.D.B. Cury, L. Tenuta, J. ten Cate, J. Cury, Comparison between transversal microradiography and surface microhardness to evaluate root dentine demineralization, Caries research 43(3) (2009) 189.
[100] J. Featherstone, Modeling the caries-inhibitory effects of dental materials, Dental Materials 12(3) (1996) 194-197.
[101] J. He, E. Söderling, M. Österblad, P.K. Vallittu, L.V. Lassila, Synthesis of methacrylate monomers with antibacterial effects against S. mutans, Molecules 16(11) (2011) 9755-9763.
[102] S. Kermanshahi, J. Santerre, D. Cvitkovitch, Y. Finer, Biodegradation of resin-dentin interfaces increases bacterial microleakage, Journal of dental research 89(9) (2010) 996-1001.
[103] Y. Shimada, A. Sadr, M.F. Burrow, J. Tagami, N. Ozawa, Y. Sumi, Validation of swept-source optical coherence tomography (SS-OCT) for the diagnosis of occlusal caries, Journal of Dentistry 38(8) (2010) 655-665.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔