|
[1] WHO Oral Health Country/Area Profile Programme. [2] 衛生福利部國民口腔健康第一期五年計畫,民國95年五月. [3] J.L. Drummond, Degradation, fatigue, and failure of resin dental composite materials, Journal of dental research 87(8) (2008) 710-719. [4] H. Nokhbatolfoghahaie, M. Alikhasi, N. Chiniforush, F. Khoei, N. Safavi, B.Y. Zadeh, Evaluation of accuracy of DIAGNOdent in diagnosis of primary and secondary caries in comparison to conventional methods, Journal of lasers in medical sciences 4(4) (2013) 159. [5] S. Kositbowornchai, C. Sukanya, T. Tidarat, T. Chanoggarn, Caries detection under composite restorations by laser fluorescence and digital radiography, Clinical oral investigations 17(9) (2013) 2079-2084. [6] C. Gonzalez-Cabezas, M. Fontana, D. Gomes-Moosbauer, G. Stookey, Early detection of secondary caries using quantitative, light-induced fluorescence, OPERATIVE DENTISTRY-UNIVERSITY OF WASHINGTON- 28(4) (2003) 415-422. [7] D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, Optical coherence tomography, Science (New York, NY) 254(5035) (1991) 1178. [8] Y. Shimada, A. Sadr, Y. Sumi, J. Tagami, Application of optical coherence tomography (OCT) for diagnosis of caries, cracks, and defects of restorations, Current oral health reports 2(2) (2015) 73-80. [9] Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, Y. Sumi, Noninvasive cross‐sectional imaging of proximal caries using swept‐source optical coherence tomography (SS‐OCT) in vivo, Journal of biophotonics 7(7) (2014) 506-513. [10] J.D. Featherstone, The science and practice of caries prevention, Journal of the American Dental Association (1939) 131(7) (2000) 887-99. [11] W.J. Loesche, Role of Streptococcus mutans in human dental decay, Microbiological reviews 50(4) (1986) 353-80. [12] S. Hamada, H.D. Slade, Biology, immunology, and cariogenicity of Streptococcus mutans, Microbiological reviews 44(2) (1980) 331-84. [13] J.M. Tanzer, J. Livingston, A.M. Thompson, The microbiology of primary dental caries in humans, Journal of dental education 65(10) (2001) 1028-37. [14] N. Takahashi, B. Nyvad, The role of bacteria in the caries process: ecological perspectives, Journal of dental research 90(3) (2011) 294-303. [15] J.D. Featherstone, Remineralization, the natural caries repair process--the need for new approaches, Advances in dental research 21(1) (2009) 4-7. [16] M.A. Buzalaf, A.R. Hannas, A.C. Magalhaes, D. Rios, H.M. Honorio, A.C. Delbem, pH-cycling models for in vitro evaluation of the efficacy of fluoridated dentifrices for caries control: strengths and limitations, Journal of applied oral science : revista FOB 18(4) (2010) 316-34. [17] S. Imazato, K. Ikebe, T. Nokubi, S. Ebisu, A.W. Walls, Prevalence of root caries in a selected population of older adults in Japan, Journal of oral rehabilitation 33(2) (2006) 137-43. [18] M. Heijnsbroek, S. Paraskevas, G.A. Van der Weijden, Fluoride interventions for root caries: a review, Oral health & preventive dentistry 5(2) (2007) 145-52. [19] J. Arends, J. Christoffersen, J.A. Buskes, J. Ruben, Effects of fluoride and methanehydroxydiphosphate on enamel and on dentine demineralization, Caries research 26(6) (1992) 409-17. [20] J.M. ten Cate, M.J. Buijs, J.J. Damen, pH-cycling of enamel and dentin lesions in the presence of low concentrations of fluoride, European journal of oral sciences 103(6) (1995) 362-7. [21] I.A. Mjor, J.E. Moorhead, J.E. Dahl, Reasons for replacement of restorations in permanent teeth in general dental practice, International dental journal 50(6) (2000) 361-6. [22] S.S. Mo, W. Bao, G.Y. Lai, J. Wang, M.Y. Li, The microfloral analysis of secondary caries biofilm around Class I and Class II composite and amalgam fillings, BMC infectious diseases 10 (2010) 241. [23] R. Thomas, H. Van Der Mei, M. Van Der Veen, J. De Soet, M. Huysmans, Bacterial composition and red fluorescence of plaque in relation to primary and secondary caries next to composite: an in situ study, Oral microbiology and immunology 23(1) (2008) 7-13. [24] M. Svanberg, I. Mjör, D. Ørstavik, Mutans streptococci in plaque from margins of amalgam, composite, and glass-ionomer restorations, Journal of dental research 69(3) (1990) 861-864. [25] I. Nedeljkovic, W. Teughels, J. De Munck, B. Van Meerbeek, K.L. Van Landuyt, Is secondary caries with composites a material-based problem?, Dental Materials 31(11) (2015) e247-e277. [26] E.S. Grossman, J.M. Matejka, Amalgam restoration and in vitro caries formation, The Journal of prosthetic dentistry 73(2) (1995) 199-209. [27] N. Kuper, F. van de Sande, N. Opdam, E. Bronkhorst, J. De Soet, M. Cenci, M. Huysmans, Restoration materials and secondary caries using an in vitro biofilm model, Journal of dental research 94(1) (2015) 62-68. [28] K. Rosin-Grget, K. Peros, I. Sutej, K. Basic, The cariostatic mechanisms of fluoride, Acta medica academica 42(2) (2013) 179-88. [29] N.R. Mohammed, N.W. Kent, R.J. Lynch, N. Karpukhina, R. Hill, P. Anderson, Effects of fluoride on in vitro enamel demineralization analyzed by (1)(9)F MAS-NMR, Caries research 47(5) (2013) 421-8. [30] 郭敏光, 江顯雄, 含氟無填料 Bis-GMA 樹脂之氟離子釋出能力, 中華牙醫學會雜誌 16(4) (1997) 227-41. [31] P. Totiam, C. Gonzalez-Cabezas, M.R. Fontana, D.T. Zero, A new in vitro model to study the relationship of gap size and secondary caries, Caries research 41(6) (2007) 467-73. [32] O. Feuerstein, S. Matalon, H. Slutzky, E.I. Weiss, Antibacterial properties of self-etching dental adhesive systems, The Journal of the American Dental Association 138(3) (2007) 349-354. [33] J.O. Gondim, C. Duque, J. Hebling, E.M. Giro, Influence of human dentine on the antibacterial activity of self-etching adhesive systems against cariogenic bacteria, journal of dentistry 36(4) (2008) 241-248. [34] C. Esteves, C. Ota-Tsuzuki, A. Reis, J. Rodrigues, Antibacterial activity of various self-etching adhesive systems against oral streptococci, Operative dentistry 35(4) (2010) 448-453. [35] C. Farrugia, J. Camilleri, Antimicrobial properties of conventional restorative filling materials and advances in antimicrobial properties of composite resins and glass ionomer cements—a literature review, Dental Materials 31(4) (2015) e89-e99. [36] W.H. Organization, Fluorides and Oral Health., Technical Report Series No. 846. Geneva: WHO. (1994). [37] W.H. Organization, Inadequate or excess fluoride: a major public health concern. , Geneva: WHO (2010). [38] M.A.R. Buzalaf, J.P. Pessan, H.M. Honório, J.M. Ten Cate, Mechanisms of action of fluoride for caries control, Fluoride and the oral environment, Karger Publishers2011, pp. 97-114. [39] I. Hamilton, Biochemical effects of fluoride on oral bacteria, Journal of dental research 69(2_suppl) (1990) 660-667. [40] K. Rošin-Grget, I. Linčir, Current concept on the anticaries fluoride mechanism of the action, Collegium antropologicum 25(2) (2001) 703-712. [41] S.E. Bishara, A.W. Ostby, White spot lesions: formation, prevention, and treatment, Seminars in Orthodontics, Elsevier, 2008, pp. 174-182. [42] H. Aghoutan, S. Alami, F. El Quars, S. Diouny, F. Bourzgui, White Spots Lesions in Orthodontic Treatment and Fluoride—Clinical Evidence, NEW TREATMENTS IN ORTHODONTICS AND MAXILLOFACIAL CONDITIONS (2015) 57. [43] R. Belli, C. Rahiotis, E.W. Schubert, L.N. Baratieri, A. Petschelt, U. Lohbauer, Wear and morphology of infiltrated white spot lesions, Journal of dentistry 39(5) (2011) 376-385. [44] H. Margolis, E. Moreno, Physicochemical perspectives on the cariostatic mechanisms of systemic and topical fluorides, Journal of dental research 69(2_suppl) (1990) 606-613. [45] D. White, G. Nancollas, Physical and chemical considerations of the role of firmly and loosely bound fluoride in caries prevention, Journal of dental research 69(2_suppl) (1990) 587-594. [46] O. Fejerskov, M.J. Larsen, A. Richards, V. Baelum, Dental tissue effects of fluoride, Advances in dental research 8(1) (1994) 15-31. [47] B. Øgaard, CaF2 formation: cariostatic properties and factors of enhancing the effect, Caries research 35(Suppl. 1) (2001) 40-44. [48] A. Dijkman, P. De Boer, J. Arends, In vivo investigation on the fluoride content in and on human enamel after topical applications, Caries research 17(5) (1983) 392-402. [49] J. Ten Cate, J. Featherstone, Physicochemical aspects of fluoride-enamel interactions, Fluoride in dentistry 2 (1996) 252-72. [50] Y. MUKAI, K. TOMIYAMA, T. SHIIYA, K. KAMIJO, F. FUJINO, T. TERANAKA, Formation of inhibition layers with a newly developed fluoride-releasing all-in-one adhesive, Dental materials journal 24(2) (2005) 172-177. [51] S. Ito, M. Iijima, M. Hashimoto, N. Tsukamoto, I. Mizoguchi, T. Saito, Effects of surface pre-reacted glass-ionomer fillers on mineral induction by phosphoprotein, Journal of dentistry 39(1) (2011) 72-79. [52] Y. Fujimoto, M. Iwasa, R. Murayama, M. Miyazaki, A. Nagafuji, T. Nakatsuka, Detection of ions released from S-PRG fillers and their modulation effect, Dental materials journal 29(4) (2010) 392-397. [53] P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, T. Nakamura, T. Yamamuro, Effects of ions in aqueous media on hydroxyapatite induction by silica gel and its relevance to bioactivity of bioactive glasses and glass‐ceramics, Journal of Applied Biomaterials 4(3) (1993) 221-229. [54] M. Tanahashi, T. Yao, T. Kokubo, M. Minoda, T. Miyamoto, T. Nakamura, T. Yamamuro, Apatite coated on organic polymers by biomimetic process: improvement in its adhesion to substrate by NaOH treatment, Journal of Applied Biomaterials 5(4) (1994) 339-347. [55] M. Gandolfi, S. Chersoni, G. Acquaviva, G. Piana, C. Prati, R. Mongiorgi, Fluoride release and absorption at different pH from glass-ionomer cements, Dental materials 22(5) (2006) 441-449. [56] B. Czarnecka, J.W. Nicholson, Ion release by resin-modified glass-ionomer cements into water and lactic acid solutions, Journal of dentistry 34(8) (2006) 539-543. [57] S. Seitaro, H. Kotake, R.J. Scougall-Vilchis, S. Ohashi, M. Hotta, S. Horiuchi, K. Hamada, K. Asaoka, E. Tanaka, K. Yamamoto, Antibacterial activity of composite resin with glass-ionomer filler particles, Dental materials journal 29(2) (2010) 193-198. [58] D. Tamura, S. Saku, K. Yamamoto, M. Hotta, Adsorption of salivary protein to resin composite containing S-PRG filler, Jpn J Conserv Dent 53 (2010) 191-206. [59] T. Idono, S. Saku, K. Yamamoto, The application of glass filler with fluorine to tooth coating materials, J Conserv Dent 52 (2009) 237-247. [60] M. Hirose, Analysis of film layer formed on S-PRG resin surface, JAPANESE JOURNAL OF CONSERVATIVE DENTISTRY 49(2) (2006) 309. [61] K. Yoshida, S. Saku, S. Ohashi, K. Yamamoto, Anti-plaque of new fluoride release adhesion system, Jpn J Conserv Dent 51 (2008) 493-501. [62] M. Herrera, P. Carrion, P. Baca, J. Liebana, A. Castillo, In vitro antibacterial activity of glass-ionomer cements, Microbios 104(409) (2000) 141-148. [63] J. Van Dijken, S. Kalfas, V. Litra, A. Oliveby, Fluoride and Mutans Streptococci Levels in Plaque on Aged Restorations of Resin-Modified Glass lonomer Cement, Compomer and Resin Composite, Caries research 31(5) (1997) 379-383. [64] X. Xu, J.O. Burgess, Compressive strength, fluoride release and recharge of fluoride-releasing materials, Biomaterials 24(14) (2003) 2451-2461. [65] R.C. Fraga, J. Siqueira, M. de Uzeda, In vitro evaluation of antibacterial effects of photo-cured glass ionomer liners and dentin bonding agents during setting, The Journal of prosthetic dentistry 76(5) (1996) 483-486. [66] M. Herrera, A. Castillo, M. Bravo, J. Liebana, P. Carrion, Antibacterial activity of resin adhesives, glass ionomer and resin-modified glass ionomer cements and a compomer in contact with dentin caries samples, Operative dentistry 25(4) (2000) 265-269. [67] F. Dabsie, G. Gregoire, M. Sixou, P. Sharrock, Does strontium play a role in the cariostatic activity of glass ionomer?: Strontium diffusion and antibacterial activity, journal of dentistry 37(7) (2009) 554-559. [68] B. Van Meerbeek, J. De Munck, Y. Yoshida, S. Inoue, M. Vargas, P. Vijay, K. Van Landuyt, P. Lambrechts, G. Vanherle, Adhesion to enamel and dentin: current status and future challenges, OPERATIVE DENTISTRY-UNIVERSITY OF WASHINGTON- 28(3) (2003) 215-235. [69] M. Yoshiyama, Y. Nishitani, T. Itota, F.R. Tay, R.M. Carvalho, D.H. Pashley, Bonding ability of adhesive resins to caries-affected and caries-infected dentin, Journal of Applied Oral Science 12(3) (2004) 171-176. [70] H. Linlin, C. EDWARD, A. OKAMOTO, M. IWAKU, A comparative study of fluoride-releasing adhesive resin materials, Dental materials journal 21(1) (2002) 9-19. [71] K. Ikemura, F. Tay, Y. Kouro, T. Endo, M. Yoshiyama, K. Miyai, D.H. Pashley, Optimizing filler content in an adhesive system containing pre-reacted glass-ionomer fillers, Dental Materials 19(2) (2003) 137-146. [72] K. Ikemura, F.R. Tay, T. Endo, D.H. Pashley, A review of chemical-approach and ultramorphological studies on the development of fluoride-releasing dental adhesives comprising new pre-reacted glass ionomer (PRG) fillers, Dental Materials Journal 27(3) (2008) 315-339. [73] J. Ten Cate, Remineralization of caries lesions extending into dentin, Journal of dental research 80(5) (2001) 1407-1411. [74] J. Featherstone, Fluoride, remineralization and root caries, American journal of dentistry 7(5) (1994) 271-274. [75] A. Kuramoto, S. Imazato, A. Walls, S. Ebisu, Inhibition of root caries progression by an antibacterial adhesive, Journal of dental research 84(1) (2005) 89-93. [76] S. Toba, P.N. Pereira, T. Nikaido, J. Tagami, Effect of topical application of fluoride gel on artificial secondary caries inhibition, Int Chin J Dent 3 (2003) 53-61. [77] J.L. Ferracane, J.C. Mitchem, J.D. Adey, Fluoride penetration into the hybrid layer from a dentin adhesive, American journal of dentistry 11(1) (1998) 23-28. [78] A.M. Zysk, F.T. Nguyen, A.L. Oldenburg, D.L. Marks, S.A. Boppart, Optical coherence tomography: a review of clinical development from bench to bedside, Journal of biomedical optics 12(5) (2007) 051403-051403-21. [79] S.J. Riederer, Current technical development of magnetic resonance imaging, IEEE Engineering in Medicine and Biology Magazine 19(5) (2000) 34-41. [80] M. Born, E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, Elsevier1980. [81] A. Fercher, K. Mengedoht, W. Werner, Eye-length measurement by interferometry with partially coherent light, Optics letters 13(3) (1988) 186-188. [82] H. Nakagawa, A. Sadr, Y. Shimada, J. Tagami, Y. Sumi, Validation of swept source optical coherence tomography (SS-OCT) for the diagnosis of smooth surface caries in vitro, Journal of dentistry 41(1) (2013) 80-89. [83] M. Maolinbay, Y. El‐Mohri, L. Antonuk, K.W. Jee, S. Nassif, X. Rong, Q. Zhao, Additive noise properties of active matrix flat‐panel imagers, Medical physics 27(8) (2000) 1841-1854. [84] R. De Santis, F. Mollica, D. Prisco, S. Rengo, L. Ambrosio, L. Nicolais, A 3D analysis of mechanically stressed dentin–adhesive–composite interfaces using X-ray micro-CT, Biomaterials 26(3) (2005) 257-270. [85] L. Torlakovic, I. Olsen, C. Petzold, H. Tiainen, B. Øgaard, Clinical color intensity of white spot lesions might be a better predictor of enamel demineralization depth than traditional clinical grading, American Journal of Orthodontics and Dentofacial Orthopedics 142(2) (2012) 191-198. [86] Q. Zhi, E. Lo, A. Kwok, An in vitro study of silver and fluoride ions on remineralization of demineralized enamel and dentine, Australian dental journal 58(1) (2013) 50-56. [87] G.R. Davis, A.N. Evershed, D. Mills, Quantitative high contrast X-ray microtomography for dental research, Journal of dentistry 41(5) (2013) 475-482. [88] B. Liu, E. Lo, C. Li, Effect of silver and fluoride ions on enamel demineralization: a quantitative study using micro‐computed tomography, Australian dental journal 57(1) (2012) 65-70. [89] R.M.O. Argenta, C.P.M. Tabchoury, J.A. Cury, A modified pH-cycling model to evaluate fluoride effect on enamel demineralization, Pesquisa Odontológica Brasileira 17(3) (2003) 241-246. [90] Y. Natsume, S. Nakashima, A. Sadr, Y. Shimada, J. Tagami, Y. Sumi, Estimation of lesion progress in artificial root caries by swept source optical coherence tomography in comparison to transverse microradiography, Journal of biomedical optics 16(7) (2011) 071408-071408-8. [91] A. Gwinnett, A. Matsui, A study of enamel adhesives: the physical relationship between enamel and adhesive, Archives of Oral Biology 12(12) (1967) 1615IN41-1620IN46. [92] M. Buonocore, A. Matsui, A. Gwinnett, Penetration of resin dental materials into enamel surfaces with reference to bonding, Archives of Oral Biology 13(1) (1968) 61IN1769IN19-67IN1870IN20. [93] G.C. Lopes, D.G. Thys, P. Klaus, G. Oliveira, N. Widmer, Enamel acid etching: a review, Compendium of continuing education in dentistry (Jamesburg, NJ: 1995) 28(1) (2007) 18-24; quiz 25, 42. [94] C. Sabatini, Effect of phosphoric acid etching on the shear bond strength of two self-etch adhesives, Journal of Applied Oral Science 21(1) (2013) 56-62. [95] P. Makishi, C. André, A. Ayres, A. Martins, M. Giannini, Effect of storage time on bond strength and nanoleakage expression of universal adhesives bonded to dentin and etched enamel, Operative dentistry 41(3) (2016) 305-317. [96] W.L.d.O. da Rosa, E. Piva, A.F. da Silva, Bond strength of universal adhesives: a systematic review and meta-analysis, Journal of dentistry 43(7) (2015) 765-776. [97] R.J.S. VILCHIS, S. Yamamoto, N. Kitai, M. Hotta, K. Yamamoto, Shear bond strength of a new fluoride-releasing orthodontic adhesive, Dental materials journal 26(1) (2007) 45-51. [98] A. Preston, L. Mair, E. Agalamanyi, S. Higham, Fluoride release from aesthetic dental materials, Journal of oral rehabilitation 26(2) (1999) 123-129. [99] G. Vale, C. Tabchoury, A.D.B. Cury, L. Tenuta, J. ten Cate, J. Cury, Comparison between transversal microradiography and surface microhardness to evaluate root dentine demineralization, Caries research 43(3) (2009) 189. [100] J. Featherstone, Modeling the caries-inhibitory effects of dental materials, Dental Materials 12(3) (1996) 194-197. [101] J. He, E. Söderling, M. Österblad, P.K. Vallittu, L.V. Lassila, Synthesis of methacrylate monomers with antibacterial effects against S. mutans, Molecules 16(11) (2011) 9755-9763. [102] S. Kermanshahi, J. Santerre, D. Cvitkovitch, Y. Finer, Biodegradation of resin-dentin interfaces increases bacterial microleakage, Journal of dental research 89(9) (2010) 996-1001. [103] Y. Shimada, A. Sadr, M.F. Burrow, J. Tagami, N. Ozawa, Y. Sumi, Validation of swept-source optical coherence tomography (SS-OCT) for the diagnosis of occlusal caries, Journal of Dentistry 38(8) (2010) 655-665.
|