(18.210.12.229) 您好!臺灣時間:2021/03/01 06:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張豪傑
研究生(外文):Hao-Chieh Chang
論文名稱:明膠-雙相磷酸鈣複合凍膠支架促進齒槽骨生成之成效探討
論文名稱(外文):Preclinical Evaluation of Gelatin/Biphasic Calcium Phosphate Cryogel Scaffold for Alveolar Ridge Augmentation
指導教授:張博鈞張博鈞引用關係
指導教授(外文):Po-Chun Chang
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:臨床牙醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:72
中文關鍵詞:骨再生組織工程雙相磷酸鈣多孔性支架第二型骨成型蛋白顆粒大小
外文關鍵詞:bone regenerationtissue engineeringBiphasic calcium phosphateporous scaffoldBMP-2particle size
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
重建缺損的齒槽骨是現今植牙治療的一大挑戰。本研究旨在發展一種創新的治療策略,意即製作明膠/雙相磷酸鈣凍膠支架(gelatin/biphasic calcium phosphate cryogel scaffold)促進齒槽骨組織再生。

複合凍膠支架是由經鍛燒牛骨後萃煉之雙相磷酸鈣顆粒與明膠混合後於低溫交聯(crosslinking)形成。動物實驗驗證分成兩部分,第一部分是透過大鼠齒槽骨上骨再生(supra-alveolar osteogenesis)模式探討明膠/雙相磷酸鈣凍膠支架促進齒槽骨垂直方向骨再生以及與植體骨整合之表現。先將老鼠雙側下顎第一大臼齒拔除並等待四周傷口癒合,再將直徑5 mm、高度2.5 mm的圓柱形支架使用迷你鈦植體(mini-titanium implant)固定在拔牙區的顎骨頰側。為最佳化再生效果,除了未使用任何支架的控制組(Group Control-1)、單純明膠/雙相磷酸鈣凍膠支架組(Group HAP)外,亦將第二型骨成型蛋白質 (Bone morphogenetic protein 2 ; BMP-2 )以直接注射(Group BMPi)或以靜電噴霧造粒技術(coaxial electrohydrodynamic atomization technology)製作含BMP-2之聚乳酸-羟基乙酸共聚物( poly(lactic-co-glycolic acid)  ; PLGA)微球體(microspheres)嵌入明膠/雙相磷酸鈣凍膠支架(Group BMPm)。動物於四周後犧牲,再生成效使用微電腦斷層成像(micro-computed tomography;micro-CT)、硬組織切片染色以及骨生成螢光染色檢測。

第二部分是透過大鼠齒槽骨內缺損(intra-bony defect)模式探討雙相磷酸鈣顆粒尺寸對於骨再生效果之影響。大鼠雙側的上顎第一大臼齒拔除後等待四周的傷口癒合,於原先拔牙區齒槽脊手術製作直徑2 mm、深1 mm的圓柱形缺損,並於缺損中分別填入含有顆粒直徑50-100 µm雙相磷酸鈣(Group HAPs)、250-1000 µm雙相磷酸鈣(Group HAPr)、及250-1000 µm未經鍛燒之牛骨顆粒(Group DBBM)與明膠交聯的凍膠支架以及不放支架的控制組(Group control-2)。動物於四週及八週犧牲,並透過微電腦斷層成像(micro-CT)以及組織切片進行骨再生的比較。

明膠/雙相磷酸鈣凍膠支架的孔洞直徑(pore size)為439±56 µm、孔隙率(porosity)為81.7±1.2 %。微球體的直徑為9.29±1.89 µm、包覆效率(encapsulation efficiency)為64.9%±4.59,並且在四週內有穩定長效的釋放。在第一部份的動物實驗中,micro-CT影像顯示所有放置凍膠支架的組別於二週及四週後均有顯著的齒槽骨增寬,其中BMPi組和BMPm組有較顯著的骨生成螢光標定,頭兩週的骨新生量BMPm組相較於HAP組亦顯著提高,且齒槽骨上的新生骨和植體的骨整合以及骨小樑結構只有在四週於BMPm組才能被觀察到。在第二部分的動物實驗中,在四週及八週的micro-CT影像檢查下各組間並沒有達到顯著的差異,然而HAPs組相較於HAPr組及DBBM組仍有較為穩定及多量的骨新生的趨勢。

本實驗的結論是結合明膠/雙相磷酸鈣凍膠支架可增進齒槽骨增厚,嵌入含BMP-2的PLGA微球體能進一步促進骨新生及植體骨整合;使用小顆粒(50-100µm)的雙相磷酸鈣製作凍膠支架可能可以提供更穩定及較佳的骨新生效果。
The reconstruction of supra-alveolar ridge deficiencies is a major challenge for dental implants. We aimed at developing a gelatin/hydroxyapatite/beta-tricalcium phosphate (gelatin/HA/ß-TCP) cryogel scaffold as a novel treatment strategy for promoting alveolar ridge regeneration.

HA/ß-TCP particles were extracted by calcining bovine bone matrix and were crosslinked with gelatin in subzero temperature to form a gelatin/HA/ß-TCP cryogel scaffold. Two animal models were utilized. The first model was to investigate the osteogenic potential of the gelatin/HA/ß-TCP cryogel scaffold in a rat supra-alveolar regeneration model. Bilateral mandibular first molars were extracted, and the scaffold was fixed on the buccal plate of the edentulous ridge using a mini-titanium implant. Specimens were divided into four groups, including no scaffold (Group Control-1), gelatin/HA/ß-TCP cryogel scaffold alone (group HAP), bone morphogenetic protein-2 (BMP-2) infused gelatin/HA/ß-TCP cryogel scaffold (group BMPi), and BMP-2 loaded microspheres encapsulated gelatin/HA/ß-TCP cryogel scaffold (group BMPm). The microspheres were composed of poly(D,L-lactide-co-glycolide) (PLGA) and were fabricated by electrohydrodynamic atomization technology. Bone fluorochromatic agents were injected after 3 and 14 days of scaffold implantation, and the animals were sacrifice after 4 weeks. Therapeutic efficiency was evaluated by microcomputed tomographic (micro-CT) imaging, bone fluorochromatic signals and histology.

The second model was to evaluate the effect of the particle size of HA/ß-TCP in a rat intra-alveolar repair model. Acute intra-alveolar defects were surgically created after 4 weeks of maxillary first molars extractions and were filled with gelatin/HA/ß-TCP cryogel scaffold with regular size (250-1000 µm) of uncalcined bovine bone matrix(Group DBBM), regular size (250-1000 µm) of HA/ß-TCP(Group HAPr) , smaller size (50-100 µm) of HA/ß-TCP(Group HAPs), or unfilled with any scaffold (Group Control-2). Animals were sacrifice at 8 weeks, and the therapeutic efficiency was evaluated by micro-CT imaging and histology.

The gelatin/HA/ß-TCP cryogel scaffold was 439±56 µm in the pore size with 81.7±1.2 % in porosity. The microspheres were 9.29±1.89 µm in diameter, with an encapsulation efficiency of 64.9%±4.59 %, and encapsulating molecules were sustained release without obvious initial burst release in 2 weeks. In the first animal study, ridge augmentation was evident in all specimens treated with composites from the micro-CT imaging in 2 and 4 weeks. Stronger bone fluorochromatic signals were noted in Groups BMPi and BMPm compared to Group HAP. In the first 2 weeks, osteogenesis was significantly greater in Group BMPm relative to Group HAP (p<0.05). Supra-alveolar osseointegration with lamellar bone formation was only evident in Group BMPm in 4 weeks.

In the second animal study, although no significant difference in osteogenesis among groups was noted from the micro-CT imaging, apparently greater osteogenesis was noted in Group HAPs relative to Groups HAPr and Group DBBM.

In conclusion, gelatin/HA/ß-TCP cryogel scaffold showed the potential to promote alveolar ridge augmentation, and in combination with control-released BMP-2 microspheres further promoted supra-alveolar osteogenesis as well as osseointegration. In the gelatin/HA/ß-TCP cryogel scaffold, smaller size (50-100 µm) of HA/ß-TCP appeared to showed better osteogenic potential than the regular size (250-1000 µm) of HA/ß-TCP.
誌謝 2
中文摘要 3
英文摘要 5
目錄 8
第1章 緒論 10
第1節 前言 10
第2節 組織工程於骨再生之應用 12
第3節 骨移植材料的種類 14
第4節 明膠/氫氧基磷灰石/雙相磷酸鈣性質概述 16
第5節 骨移植材之顆粒大小與骨再生之關聯性 18
第6節 第二型骨成型蛋白於骨再生之應用 20
第7節 微米微球體之製作與特性 22
第2章 研究動機 25
第3章 材料與方法 26
第1節 複合凍膠支架製作 26
第1項 複合凍膠支架示性檢測 27
第2節 骨成型蛋白微球體 28
第3節 動物實驗-齒槽骨上骨再生模型 30
第1項 實驗動物的選擇 30
第2項 實驗材料 30
第3項 手術步驟 30
第4項 實驗分組與設計 31
第5項 術後照顧 31
第6項 螢光標定 31
第7項 Micro-CT 分析 32
第8項 非脫鈣切片製備 33
第9項 新生鈣化組織定量 33
第10項 組織學檢查 34
第11項 統計分析 35
第4節 動物實驗-齒槽骨內骨再生模型 36
第1項 實驗動物的選擇 36
第2項 實驗材料 36
第3項 不同顆粒大小凍膠支架示性檢測 36
第4項 手術步驟 37
第5項 實驗分組與設計 38
第6項 術後照顧 38
第7項 Micro-CT 分析 38
第8項 組織學描述 39
第4章 實驗結果 40
第1節 明膠/雙相磷酸鈣凍膠支架性質分析 40
第2節 齒槽骨上動物模型之實驗結果 40
第1項 實驗觀察及Micro-CT 結果分析 40
第2項 BS-SEM及螢光標定訊號的量化分析 41
第3項 組織學描述 42
第3節 齒槽骨內動物模型之實驗結果 42
第1項 改變顆粒大小之凍膠支架示性檢測 42
第2項 micro-CT結果及量化分析 43
第3項 組織學描述 43
第5章 討論 44
第6章 結論 52
圖表 53
參考文獻 64
Anderson JM, Shive MS. 2012. Biodegradation and biocompatibility of pla and plga microspheres. Advanced drug delivery reviews. 64:72-82.
Araújo MG, Linder E, Lindhe J. 2011. Bio‐oss® collagen in the buccal gap at immediate implants: A 6‐month study in the dog. Clinical Oral Implants Research. 22(1):1-8.
Araújo MG, Lindhe J. 2009. Ridge preservation with the use of bio-oss collagen: A 6-month study in the dog. Clinical oral implants research. 20(5):433-440.
Bencherif SA, Braschler TM, Renaud P. 2013. Advances in the design of macroporous polymer scaffolds for potential applications in dentistry. Journal of periodontal & implant science. 43(6):251-261.
Bessa PC, Casal M, Reis R. 2008a. Bone morphogenetic proteins in tissue engineering: The road from laboratory to clinic, part ii (bmp delivery). Journal of tissue engineering and regenerative medicine. 2(2‐3):81-96.
Bessa PC, Casal M, Reis R. 2008b. Bone morphogenetic proteins in tissue engineering: The road from the laboratory to the clinic, part i (basic concepts). Journal of tissue engineering and regenerative medicine. 2(1):1-13.
Buser D, Belser U, Wismeijer D, Lee JS, Kim JK, Park Y-C, Vanarsdall Jr RL. 2007. Iti treatment guide, vol 1: Implant therapy in the esthetic zone for single-tooth replacements. Berlin: Quintessence.
Buser D, Dula K, Hirt HP, Schenk RK. 1996. Lateral ridge augmentation using autografts and barrier membranes: A clinical study with 40 partially edentulous patients. Journal of Oral and Maxillofacial Surgery. 54(4):420-432.
Carvalho AL, Faria PE, Grisi MF, Souza SL, Taba Jr M, Palioto DB, Novaes Jr AB, Fraga AF, Ozyegin LS, Oktar FN. 2007. Effects of granule size on the osteoconductivity of bovine and synthetic hydroxyapatite: A histologic and histometric study in dogs. Journal of Oral Implantology. 33(5):267-276.
Chang B-S, Hong K-S, Youn H-J, Ryu H-S, Chung S-S, Park K-W. 2000. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials. 21(12):1291-1298.
Chang P-C, Dovban AS, Lim LP, Chong LY, Kuo MY, Wang C-H. 2013a. Dual delivery of pdgf and simvastatin to accelerate periodontal regeneration in vivo. Biomaterials. 34(38):9990-9997.
Chang P-C, Seol Y-J, Cirelli JA, Pellegrini G, Jin Q, Franco LM, Goldstein SA, Chandler LA, Sosnowski B, Giannobile WV. 2010. Pdgf-b gene therapy accelerates bone engineering and oral implant osseointegration. Gene therapy. 17(1):95-104.
Chang P-C, Seol Y-J, Goldstein SA, Giannobile WV. 2013b. Determination of the dynamics of healing at the tissue-implant interface by means of microcomputed tomography and functional apparent moduli. The International journal of oral & maxillofacial implants. 28(1):68.
Chen G, Deng C, Li Y-P. 2012. Tgf-β and bmp signaling in osteoblast differentiation and bone formation. International journal of biological sciences. 8(2):272.
Chin M. 1999. Distraction osteogenesis for dental implants. Atlas of the oral and maxillofacial surgery clinics of North America. 7(1):41.
Chin M, Toth BA. 1996. Distraction osteogenesis in maxillofacial surgery using internal devices: Review of five cases. Journal of Oral and Maxillofacial Surgery. 54(1):45-53.
Coathup MJ, Cai Q, Campion C, Buckland T, Blunn GW. 2013. The effect of particle size on the osteointegration of injectable silicate‐substituted calcium phosphate bone substitute materials. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 101(6):902-910.
Cowan CM, Aghaloo T, Chou YF, Walder B, Zhang X, Soo C, Ting K, Wu B. 2007. Microct evaluation of three-dimensional mineralization in response to bmp-2 doses in vitro and in critical sized rat calvarial defects. Tissue Eng. 13(3):501-512.
Daculsi G. 1998. Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials. 19(16):1473-1478.
Degidi M, Daprile G, Nardi D, Piattelli A. 2013. Buccal bone plate in immediately placed and restored implant with bio‐oss® collagen graft: A 1‐year follow‐up study. Clinical oral implants research. 24(11):1201-1205.
Dimitriou R, Tsiridis E, Giannoudis PV. 2005. Current concepts of molecular aspects of bone healing. Injury. 36(12):1392-1404.
Donath K, Breuner G. 1982. A method for the study of undecalcified bones and teeth with attached soft tissues. Journal of Oral Pathology & Medicine. 11(4):318-326.
Ducy P, Schinke T, Karsenty G. 2000. The osteoblast: A sophisticated fibroblast under central surveillance. Science. 289(5484):1501-1504.
Edlund U, Albertsson A-C. 2002. Degradable polymer microspheres for controlled drug delivery. Degradable aliphatic polyesters. Springer. p. 67-112.
Elnayef B, Monje A, Gargallo-Albiol J, Galindo-Moreno P, Wang H-L, Hernandez-Alfaro F. 2017. Vertical ridge augmentation in the atrophic mandible: A systematic review and meta-analysis. International Journal of Oral & Maxillofacial Implants. 32(2).
Erben RG. 2003. Bone-labeling techniques. Handbook of histology methods for bone and cartilage.99-117.
Evans E. 1991. Toxicity of hydroxyapatite in vitro: The effect of particle size. Biomaterials. 12(6):574-576.
Freitas S, Merkle HP, Gander B. 2005. Microencapsulation by solvent extraction/evaporation: Reviewing the state of the art of microsphere preparation process technology. Journal of controlled release. 102(2):313-332.
Fu YC, Nie H, Ho ML, Wang CK, Wang CH. 2008. Optimized bone regeneration based on sustained release from three‐dimensional fibrous plga/hap composite scaffolds loaded with bmp‐2. Biotechnology and bioengineering. 99(4):996-1006.
Guan J, Fujimoto KL, Sacks MS, Wagner WR. 2005. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials. 26(18):3961-3971.
Gupta V, Khan Y, Berkland CJ, Laurencin CT, Detamore M. 2017. Microsphere-based scaffolds in regenerative engineering. Annual Review of Biomedical Engineering. 19(1).
Haidar ZS, Hamdy RC, Tabrizian M. 2009. Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part a: Current challenges in bmp delivery. Biotechnol Lett. 31(12):1817-1824.
Hillerup S, Jensen R. 2006. Nerve injury caused by mandibular block analgesia. International journal of oral and maxillofacial surgery. 35(5):437-443.
Hollister SJ. 2005. Porous scaffold design for tissue engineering. Nature materials. 4(7):518.
Howell TH, Fiorellini J, Jones A, Alder M, Nummikoski P, Lazaro M, Lilly L, Cochran D. 1997. A feasibility study evaluating rhbmp-2/absorbable collagen sponge device for local alveolar ridge preservation or augmentation. International journal of periodontics & restorative dentistry. 17(2).
Huang Y, Onyeri S, Siewe M, Moshfeghian A, Madihally SV. 2005. In vitro characterization of chitosan–gelatin scaffolds for tissue engineering. Biomaterials. 26(36):7616-7627.
Hutmacher DW. 2001. Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. Journal of Biomaterials Science, Polymer Edition. 12(1):107-124.
Jeon O, Song SJ, Yang HS, Bhang S-H, Kang S-W, Sung MA, Lee JH, Kim B-S. 2008. Long-term delivery enhances in vivo osteogenic efficacy of bone morphogenetic protein-2 compared to short-term delivery. Biochemical and biophysical research communications. 369(2):774-780.
Jung RE, Thoma DS, Hammerle CH. 2008. Assessment of the potential of growth factors for localized alveolar ridge augmentation: A systematic review. Journal of clinical periodontology. 35(s8):255-281.
Jung RE, Windisch SI, Eggenschwiler AM, Thoma DS, Weber FE, Hämmerle CH. 2009. A randomized‐controlled clinical trial evaluating clinical and radiological outcomes after 3 and 5 years of dental implants placed in bone regenerated by means of gbr techniques with or without the addition of bmp‐2. Clinical oral implants research. 20(7):660-666.
Kaigler D, Avila G, Wisner-Lynch L, Nevins ML, Nevins M, Rasperini G, Lynch SE, Giannobile WV. 2011. Platelet-derived growth factor applications in periodontal and peri-implant bone regeneration. Expert opinion on biological therapy. 11(3):375-385.
Kang H-W, Tabata Y, Ikada Y. 1999. Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials. 20(14):1339-1344.
Kao ST, Scott DD. 2007. A review of bone substitutes. Oral and maxillofacial surgery clinics of North America. 19(4):513-521.
Kolk A, Handschel J, Drescher W, Rothamel D, Kloss F, Blessmann M, Heiland M, Wolff K-D, Smeets R. 2012. Current trends and future perspectives of bone substitute materials–from space holders to innovative biomaterials. Journal of Cranio-Maxillofacial Surgery. 40(8):706-718.
Kurz LT, Garfin SR, BOOTH Jr RE. 1989. Harvesting autogenous iliac bone grafts: A review of complications and techniques. Spine. 14(12):1324-1331.
Lee S-H, Shin H. 2007. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Advanced drug delivery reviews. 59(4):339-359.
LeGeros R, Lin S, Rohanizadeh R, Mijares D, LeGeros J. 2003. Biphasic calcium phosphate bioceramics: Preparation, properties and applications. Journal of materials science: Materials in Medicine. 14(3):201-209.
Lin F-H, Liao C-J, Chen K-S, Sun J-S. 1999. Preparation of a biphasic porous bioceramic by heating bovine cancellous bone with na 4 p 2 o 7· 10h 2 o addition. Biomaterials. 20(5):475-484.
Lintern KB, Guidato S, Rowe A, Saldanha JW, Itasaki N. 2009. Characterization of wise protein and its molecular mechanism to interact with both wnt and bmp signals. Journal of Biological Chemistry. 284(34):23159-23168.
Liu Y, Enggist L, Kuffer AF, Buser D, Hunziker EB. 2007. The influence of bmp-2 and its mode of delivery on the osteoconductivity of implant surfaces during the early phase of osseointegration. Biomaterials. 28(16):2677-2686.
Loscertales IG, Barrero A, Guerrero I, Cortijo R, Marquez M, Ganan-Calvo A. 2002. Micro/nano encapsulation via electrified coaxial liquid jets. Science. 295(5560):1695-1698.
Mathias P. G. Bostrom MDAS. 2005. The clinical use of allografts, demineralized bone matrices, synthetic bone graft substitutes and osteoinductive growth factors: A survey study. HSSJ. 1:9-18.
Melcher A, Maniatopoulos C, Rodriguez A, Deporter D. 1986. An improved method for preparing histological sections of metallic implants. International Journal of Oral & Maxillofacial Implants. 1(1).
Mellonig JT, Bowers GM, Cotton WR. 1981. Comparison of bone graft materials: Part ii. New bone formation with autografts and allografts: A histological evaluation. Journal of periodontology. 52(6):297-302.
Minami H, Kobayashi H, Okubo M. 2005. Preparation of hollow polymer particles with a single hole in the shell by sapsep£. Langmuir. 21(13):5655-5658.
Mishra R, Goel SK, Gupta KC, Kumar A. 2013. Biocomposite cryogels as tissue-engineered biomaterials for regeneration of critical-sized cranial bone defects. Tissue Engineering Part A. 20(3-4):751-762.
Moore WR, Graves SE, Bain GI. 2001. Synthetic bone graft substitutes. ANZ journal of surgery. 71(6):354-361.
Mordenfeld A, Hallman M, Johansson CB, Albrektsson T. 2010. Histological and histomorphometrical analyses of biopsies harvested 11 years after maxillary sinus floor augmentation with deproteinized bovine and autogenous bone. Clinical Oral Implants Research. 21(9):961-970.
Mravic M, Péault B, James AW. 2014. Current trends in bone tissue engineering. BioMed research international. 2014.
Neubüser A, Peters H, Balling R, Martin GR. 1997. Antagonistic interactions between fgf and bmp signaling pathways: A mechanism for positioning the sites of tooth formation. Cell. 90(2):247-255.
Nie H, Dong Z, Arifin DY, Hu Y, Wang CH. 2010. Core/shell microspheres via coaxial electrohydrodynamic atomization for sequential and parallel release of drugs. Journal of Biomedical Materials Research Part A. 95(3):709-716.
Nie H, Soh BW, Fu YC, Wang CH. 2008. Three‐dimensional fibrous plga/hap composite scaffold for bmp‐2 delivery. Biotechnology and Bioengineering. 99(1):223-234.
Oonishi H, Hench L, Wilson J, Sugihara F, Tsuji E, Kushitani S, Iwaki H. 1999. Comparative bone growth behavior in granules of bioceramic materials of various sizes. Journal of biomedical materials research. 44(1):31-43.
Otsu N. 1979. A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics. 9(1):62-66.
Ozturk BY, Inci I, Egri S, Ozturk AM, Yetkin H, Goktas G, Elmas C, Piskin E, Erdogan D. 2013. The treatment of segmental bone defects in rabbit tibiae with vascular endothelial growth factor (vegf)-loaded gelatin/hydroxyapatite “cryogel” scaffold. European Journal of Orthopaedic Surgery & Traumatology. 23(7):767-774.
Piattelli M, Favero GA, Scarano A, Orsini G, Piattelli A. 1999. Bone reactions to anorganic bovine bone (bio-oss) used in sinus augmentation procedures: A histologic long-term report of 20 cases in humans. International Journal of Oral and Maxillofacial Implants. 14(6):835-840.
Rosen V, Thies RS. 1992. The bmp proteins in bone formation and repair. Trends in Genetics. 8(3):97-102.
Rummelhart J, Mellonig J, Gray J, Towle H. 1989. A comparison of freeze–dried bone allograft and demineralized freeze–dried bone allograft in human periodontal osseous defects. Journal of periodontology. 60(12):655-663.
Saitoh H, Takata T, Nikai H, Shintani H, HYON SH, Ikada Y. 1994. Effect of polylactic acid on osteoinduction of demineralized bone: Preliminary study of the usefulness of polylactic acid as a carrier of bone morphogenetic protein. Journal of oral rehabilitation. 21(4):431-438.
Sanz M, Donos N, Alcoforado G, Balmer M, Gurzawska K, Mardas N, Milinkovic I, Nisand D, Rocchietta I, Stavropoulos A. 2015. Therapeutic concepts and methods for improving dental implant outcomes. Summary and consensus statements. The 4th eao consensus conference 2015. Clinical oral implants research. 26(S11):202-206.
Schropp L, Wenzel A, Kostopoulos L, Karring T. 2003. Bone healing and soft tissue contour changes following single-tooth extraction: A clinical and radiographic 12-month prospective study. International Journal of Periodontics & Restorative Dentistry. 23(4).
Shapoff CA, Bowers GM, Levy B, Mellonig JT, Yukna RA. 1980. The effect of particle size on the osteogenic activity of composite grafts of allogeneic freeze-dried bone and autogenous marrow. Journal of periodontology. 51(11):625-630.
Simion M, Trisi P, Piattelli A. 1994. Vertical ridge augmentation using a membrane technique associated with osseointegrated implants. International Journal of Periodontics & Restorative Dentistry. 14(6).
Spicer PP, Kretlow JD, Young S, Jansen JA, Kasper FK, Mikos AG. 2012. Evaluation of bone regeneration using the rat critical size calvarial defect. Nature protocols. 7(10):1918.
Sun J-S, Liu H-C, Chang WH-S, Li J, Lin F-H, Tai H-C. 1998. Influence of hydroxyapatite particle size on bone cell activities: An in vitro study. Journal of biomedical materials research. 39(3):390-397.
Syftestad G, Urist MR. 1979. Degradation of bone matrix morphogenetic activity by pulverization. Clinical orthopaedics and related research. 141:281-286.
Tabata Y, Ikada Y. 1998. Protein release from gelatin matrices. Advanced drug delivery reviews. 31(3):287-301.
Takahashi Y, Yamamoto M, Tabata Y. 2005. Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and β-tricalcium phosphate. Biomaterials. 26(23):4856-4865.
Termaat M, Den Boer F, Bakker F, Patka P, Haarman HTM. 2005a. Bone morphogenetic proteins. J Bone Joint Surg Am. 87(6):1367-1378.
Termaat M, Den Boer F, Bakker F, Patka P, Haarman HTM. 2005b. Bone morphogenetic proteins: Development and clinical efficacy in the treatment of fractures and bone defects. JBJS. 87(6):1367-1378.
Thaller SR, Hoyt J, Dart A, Borjeson K, Tesluk H. 1994. Repair of experimental calvarial defects with bio-oss particles and collagen sponges in a rabbit model. Journal of Craniofacial Surgery. 5(4):242-246.
Traini T, Degidi M, Iezzi G, Artese L, Piattelli A. 2007. Comparative evaluation of the peri-implant bone tissue mineral density around unloaded titanium dental implants. Journal of dentistry. 35(1):84-92.
Tsai W-C, Liao C-J, Wu C-T, Liu C-Y, Lin S-C, Young T-H, Wu S-S, Liu H-C. 2010. Clinical result of sintered bovine hydroxyapatite bone substitute: Analysis of the interface reaction between tissue and bone substitute. Journal of Orthopaedic Science. 15(2):223-232.
Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y. 1997. Pore size of porous hydroxyapatite as the cell-substratum controls bmp-induced osteogenesis. The journal of biochemistry. 121(2):317-324.
Urist MR. 1965. Bone: Formation by autoinduction. Science. 150(3698):893-899.
Urist MR. 1968. Surface-decalcified allogeneic bone (sdab) implants*: A preliminary report of 10 cases and 25 comparable operations with undecalcified lyophilized bone implants. Clinical orthopaedics and related research. 56:37-50.
Versypt ANF, Pack DW, Braatz RD. 2013. Mathematical modeling of drug delivery from autocatalytically degradable plga microspheres—a review. Journal of Controlled Release. 165(1):29-37.
Von Arx T, Buser D. 2006. Horizontal ridge augmentation using autogenous block grafts and the guided bone regeneration technique with collagen membranes: A clinical study with 42 patients. Clinical oral implants research. 17(4):359-366.
Wang PE, Chaki T. 1993. Sintering behaviour and mechanical properties of hydroxyapatite and dicalcium phosphate. Journal of Materials Science: Materials in Medicine. 4(2):150-158.
Weissenböck M, Stein E, Undt G, Ewers R, Lauer G, Turhani D. 2006. Particle size of hydroxyapatite granules calcified from red algae affects the osteogenic potential of human mesenchymal stem cells in vitro. Cells Tissues Organs. 182(2):79-88.
Wikesjö UM, Qahash M, Polimeni G, Susin C, Shanaman RH, Rohrer MD, Wozney JM, Hall J. 2008. Alveolar ridge augmentation using implants coated with recombinant human bone morphogenetic protein‐2: Histologic observations. Journal of clinical periodontology. 35(11):1001-1010.
Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA. 1988. Novel regulators of bone formation: Molecular clones and activities. Science. 242(4885):1528-1535.
Xia Y, Xu Q, Wang Ch, Pack DW. 2013. Protein encapsulation in and release from monodisperse double‐wall polymer microspheres. Journal of pharmaceutical sciences. 102(5):1601-1609.
Xie J, Ng WJ, Lee LY, Wang C-H. 2008. Encapsulation of protein drugs in biodegradable microparticles by co-axial electrospray. Journal of Colloid and Interface Science. 317(2):469-476.
Yamada K, Tabata Y, Yamamoto K, Miyamoto S, Nagata I, Kikuchi H, Ikada Y. 1997. Potential efficacy of basic fibroblast growth factor incorporated in biodegradable hydrogels for skull bone regeneration. Journal of neurosurgery. 86(5):871-875.
Young S, Patel ZS, Kretlow JD, Murphy MB, Mountziaris PM, Baggett LS, Ueda H, Tabata Y, Jansen JA, Wong M. 2009. Dose effect of dual delivery of vascular endothelial growth factor and bone morphogenetic protein-2 on bone regeneration in a rat critical-size defect model. Tissue Engineering Part A. 15(9):2347-2362.
Young S, Wong M, Tabata Y, Mikos AG. 2005. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. Journal of Controlled Release. 109(1):256-274.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔