跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/15 03:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂佩軒
研究生(外文):Pei-Hsuan Lu
論文名稱:探討造釉細胞瘤之FGFR2-RAS-BRAF及SMO之基因突變
論文名稱(外文):Assessment of activating mutations of FGFR2-RAS-BRAF and SMO in ameloblastoma
指導教授:張玉芳張玉芳引用關係李正喆李正喆引用關係
口試日期:2017-05-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:臨床牙醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:81
中文關鍵詞:BRAF (V600E) 突變免疫組織化學染色法DNA定序造釉細胞瘤
外文關鍵詞:BRAF (V600E) mutationSanger sequencingimmunohistochemistryameloblastoma
相關次數:
  • 被引用被引用:0
  • 點閱點閱:314
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
造釉細胞瘤是顎骨最常見的齒源性上皮腫瘤,此腫瘤雖為良性,其特性卻相當具侵略性,容易復發,故目前的標準處置為大範圍切除,而導致大量組織缺損,影響口腔顏面的功能與美觀甚巨。然而最近幾年造釉細胞瘤之致病機轉有了突破性的發現,超過八成的造釉細胞瘤案例都有MAPK(FGFR-RAS-RAF) pathway的突變,其中BRAF(V600E)的突變占了六成,另外Sonic hedgehog pathway裡的SMO也被報導有一至三成的突變,由於在其他腫瘤已有使用MAPK pathway及Sonic hedgehog pathway相關的標靶藥物,且文獻中也有三個造釉細胞瘤使用MAPK標靶藥物的臨床案例,證明標靶藥物可能成為未來治療造釉細胞瘤的方法之一。
我們的研究致力於了解台灣造釉細胞瘤病患的MAPK(FGFR-RAS-RAF) pathway以及SMO之各種分子突變情形。我們共萃取了77個未脫鈣的造釉細胞瘤病理標本的DNA,針對FGFR2,KRAS,BRAF,SMO分子常見的基因突變區做DNA的定序,並針對最常見的BRAF(V600E)的偵測方法-定序及免疫組織化學染色,作進一步的分析。結果發現BRAF(V600E)的突變率高達78%,但沒有找到其他分子的突變。考量到在未來在臨床上標靶治療用藥前必須先檢測病人是否有BRAF(V600E)的突變,我們將BRAF的DNA定序結果當成標準來評估使用免疫組織化學染色偵測BRAF(V600E)的敏感度和特異度。結果發現敏感度為69%,特異度為33%。
由此實驗可了解到BRAF(V600E)的突變在台灣造釉細胞瘤病患的致病機轉當中扮演了重要角色。另外由於免疫組織化學染色的敏感度和特異度不佳,我們建議使用DNA定序來偵測造釉細胞瘤之BRAF(V600E)的突變。
Ameloblastoma is a benign neoplasm, and is the most prevalent amongst epithelial odontogenic neoplasm. Due to its locally aggressive behavior and the high risk of recurrence, surgical resection which results in facial deformity and significant morbidity is often needed in the treatment of ameloblastoma. However, in the past three years, several studies bring some insight into the molecular pathogenesis of ameloblastoma and the development of molecule-targeted therapy is foreseeable. Recent research have shown frequent MAPK (FGFR-RAS-RAF) pathway and SMO mutation in ameloblastomas, among which BRAF (V600E) mutation is the most common mutation. Because these MAPK pathway and SMO mutations have been identified in other neoplasms, the targeted therapy medications are available and have been used for treatment. Moreover, until now, there are already three case reports suggesting the efficacy of BRAF and MEK inhibitors in treating BRAF mutated ameloblastoma patients.
As the first step of using targeted therapy in the future, the aim of this study was to investigate the frequency of MAPK (FGFR-RAS-RAF) pathway and SMO mutations in various subtypes of ameloblastomas including follicular, plexiform and unicystic variants in Taiwan. Considering sequencing as gold standard to detect mutation, we also performed the BRAF (V600E) immunohistochemistry(IHC) with an antibody against BRAF (V600E)-mutated protein (clone VE1, Roche Molecular Diagnostics) that was proved well functioned in detecting other BRAF mutated neoplasms; then we compared the IHC results with BRAF (V600E) sequencing to evaluate the accuracy of using IHC in detecting BRAF mutation in ameloblastoma.
Seventy-seven non-decalcified ameloblastoma tissue sections were used for macro-dissection, DNA extraction and sequencing for examining the frequency of SMO FGFR2, KRAS, and BRAF mutations. BRAF (V600E) mutation status was further evaluated by BRAF (V600E) immunohistochemistry and the concordance between two methods was also examined. One dental follicle and one papillary thyroid carcinoma were used as negative and positive control, respectively.
In our results, sixty out of 77 ameloblastoma (78%) cases were BRAF (V600E) mutated. The mutation rate was 83.3% (25/30) for follicular type, 78% (15/19) for plexiform type, 76% (19/25) for unicystic type, 0/1 for desmoplastic type and 1/2 for granular cell type. No SMO, FGFR2 or KRAS mutation was identified in our cases. Notably, significant disconcordance between BRAF (V600E) sequencing and immunohistochemistry was observed in 48 ameloblastomas. The sensitivity and specificity of using BRAF (V600E) immunohistochemistry to detect the BRAF (V600E) mutation was 69% and 33%, respectively.
Our study showed that BRAF (V600E) mutation plays a predominant role in the pathogenesis of ameloblastoma in Taiwan. According to our results, we suggested using Sanger sequencing instead of IHC in detection of BRAF (V600E) mutation in ameloblastomas.
論文口試委員審定書i
誌謝ii
中文摘要iii
Abstractv
Literature Review
Part 1. Introduction 1
(i) Epidemiology of ameloblastoma1
(ii) Introduction of ameloblastoms1
(iii) Clinicoradiographic features of ameloblastoma4
(iv) Treatment of ameloblastoma5
Part 2. Pathogenesis of ameloblastoma9
(i) Genetic alterations in ameloblastoma9
(ii) Mitogen activated protein kinase(MAPK) pathway (FGFR2-RAS-BRAF) 12
(iii) Sonic hedgehog (Shh) signaling pathway15
(iv) Clinicopathologic associations of mutational profiles in ameloblastoma16
Part 3. New Treatment Options for ameloblastoma--Targeted therapy18
(i) Introduction of targeted therapy18
(ii) Potentially targeted molecules of ameloblastomas19
(iii) Clinical reports of targeted therapy for ameloblastoma patients24
Part 4. BRAF (V600E) immunohistochemistry27
(i) Introduction of BRAF protein27
(ii) BRAF (V600E) mutation28
(iii) Mutant-specific BRAF immunohistochemistry28
Materials and methods
Part 1. Patients and specimens31
Part 2. DNA isolation31
Part 3. Polymerase chain reaction (PCR)32
Part 4. Sanger sequencing33
Part 5. BRAF mutant-specific immunohistochemistry34
Part 6. Western blot to detect BRAF (V600E) in ameloblastoma cell lines35
Part 7. Assessment of clinical parameters36
Part 8. Statistical analysis37

Results
Part 1. Sanger sequencing results39
Part 2. BRAF mutant-specific immunohistochemistry in ameloblastomas40
Part 3. Comparison of BRAF (V600E) immunohistochemistry and sequencing40
Part 4. Western blot to detect BRAF (V600E) protein in ameloblastoma cell lines41
Part 5 Clinicopathological associations of BRAF genotypes42

Discussion44
Conclusion53
References54
Tables63
Figures68
Reference:

1.Nagi R, Sahu S, Rakesh N. Molecular and genetic aspects in the etiopathogenesis of ameloblastoma: An update. Journal of oral and maxillofacial pathology : JOMFP 2016;20:497-504.

2.Larsson A, Almeren H. Ameloblastoma of the jaws. An analysis of a consecutive series of all cases reported to the Swedish Cancer Registry during 1958--1971. Acta pathologica et microbiologica Scandinavica Section A, Pathology 1978;86a:337-49.

3.Regezi JA, Kerr DA, Courtney RM. Odontogenic tumors: analysis of 706 cases. Journal of oral surgery (American Dental Association : 1965) 1978;36:771-8.

4.McClary AC, West RB, McClary AC, et al. Ameloblastoma: a clinical review and trends in management. European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery 2016;273:1649-61.

5.Brown NA, Betz BL. Ameloblastoma: A Review of Recent Molecular Pathogenetic Discoveries. Biomarkers in cancer 2015;7:19-24.

6.Pereira NB, Pereira KM, Coura BP, et al. BRAFV600E mutation in the diagnosis of unicystic ameloblastoma. Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology 2016.

7.Garcia NG, Oliveira DT, Rodrigues MT. Unicystic Ameloblastoma with Mural Proliferation Managed by Conservative Treatment. Case reports in pathology 2016;2016:3089540.

8.Reichart PA, Philipsen HP, Sonner S. Ameloblastoma: biological profile of 3677 cases. European journal of cancer Part B, Oral oncology 1995;31b:86-99.

9.Becelli R, Carboni A, Cerulli G, Perugini M, Iannetti G. Mandibular ameloblastoma: analysis of surgical treatment carried out in 60 patients between 1977 and 1998. The Journal of craniofacial surgery 2002;13:395-400; discussion

10.Olaitan AA, Adeola DS, Adekeye EO. Ameloblastoma: clinical features and management of 315 cases from Kaduna, Nigeria. Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery 1993;21:351-5.

11.Tranchina MG, Amico P, Galia A, et al. Ameloblastoma of the sinonasal tract: report of a case with clinicopathologic considerations. Case reports in pathology 2012;2012:218156.

12.Rosenstein T, Pogrel MA, Smith RA, Regezi JA. Cystic ameloblastoma--behavior and treatment of 21 cases. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons 2001;59:1311-6; discussion 6-8.

13.Curi MM, Dib LL, Pinto DS. Management of solid ameloblastoma of the jaws with liquid nitrogen spray cryosurgery. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 1997;84:339-44.

14.Muller H, Slootweg PJ. The ameloblastoma, the controversial approach to therapy. Journal of maxillofacial surgery 1985;13:79-84.

15.Ueno S, Mushimoto K, Shirasu R. Prognostic evaluation of ameloblastoma based on histologic and radiographic typing. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons 1989;47:11-5.

16.Pogrel MA. The use of liquid nitrogen cryotherapy in the management of locally aggressive bone lesions. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons 1993;51:269-73; discussion 74.

17.Huffman GG, Thatcher JW. Ameloblastoma--the conservative surgical approach to treatment: report of four cases. Journal of oral surgery (American Dental Association : 1965) 1974;32:850-4.

18.Carlson ER, Marx RE. The ameloblastoma: primary, curative surgical management. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons 2006;64:484-94.

19.Vayvada H, Mola F, Menderes A, Yilmaz M. Surgical management of ameloblastoma in the mandible: Segmental mandibulectomy and immediate reconstruction with free fibula or deep circumflex iliac artery flap (evaluation of the long-term esthetic and functional results). Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons 2006;64:1532-9.

20.Ndukwe KC, Adebiyi EK, Ugboko VI, et al. Ameloblastic carcinoma: a multicenter Nigerian study. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons 2010;68:2111-4.

21.Sehdev MK, Huvos AG, Strong EW, Gerold FP, Willis GW. Proceedings: Ameloblastoma of maxilla and mandible. Cancer 1974;33:324-33.

22.Shatkin S, Hoffmeister FS. Ameloblastoma: a rational approach to therapy. Oral surgery, oral medicine, and oral pathology 1965;20:421-35.

23.Miyamoto CT, Brady LW, Markoe A, Salinger D. Ameloblastoma of the jaw. Treatment with radiation therapy and a case report. American journal of clinical oncology 1991;14:225-30.

24.Ueda M, Kaneda T. Combined chemotherapy and radiotherapy for advanced maxillary ameloblastoma. A case report. Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery 1991;19:272-4.

25.Kennedy WR, Werning JW, Kaye FJ, Mendenhall WM. Treatment of ameloblastoma and ameloblastic carcinoma with radiotherapy. European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery 2016;273:3293-7.

26.Ramadas K, Jose CC, Subhashini J, Chandi SM, Viswanathan FR. Pulmonary metastases from ameloblastoma of the mandible treated with cisplatin, adriamycin, and cyclophosphamide. Cancer 1990;66:1475-9.

27.Grunwald V, Le Blanc S, Karstens JH, et al. Metastatic malignant ameloblastoma responding to chemotherapy with paclitaxel and carboplatin. Annals of oncology : official journal of the European Society for Medical Oncology 2001;12:1489-91.

28.Campbell D, Jeffrey RR, Wallis F, Hulks G, Kerr KM. Metastatic pulmonary ameloblastoma. An unusual case. The British journal of oral & maxillofacial surgery 2003;41:194-6.

29.Amzerin M, Fadoukhair Z, Belbaraka R, et al. Metastatic ameloblastoma responding to combination chemotherapy: case report and review of the literature. Journal of medical case reports 2011;5:491.

30.Heikinheimo K, Kurppa KJ, Laiho A, et al. Early dental epithelial transcription factors distinguish ameloblastoma from keratocystic odontogenic tumor. Journal of dental research 2015;94:101-11.

31.So F, Daley TD, Jackson L, Wysocki GP. Immunohistochemical localization of fibroblast growth factors FGF-1 and FGF-2, and receptors FGFR2 and FGFR3 in the epithelium of human odontogenic cysts and tumors. Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology 2001;30:428-33.

32.Myoken Y, Myoken Y, Okamoto T, Sato JD, Takada K. Immunohistochemical localization of fibroblast growth factor-1 (FGF-1) and FGF-2 in cultured human ameloblastoma epithelial cells and ameloblastoma tissues. Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology 1995;24:387-92.

33.Nakao Y, Mitsuyasu T, Kawano S, et al. Fibroblast growth factors 7 and 10 are involved in ameloblastoma proliferation via the mitogen-activated protein kinase pathway. International journal of oncology 2013;43:1377-84.

34.Kurppa KJ, Caton J, Morgan PR, et al. High frequency of BRAF V600E mutations in ameloblastoma. The Journal of pathology 2014;232:492-8.

35.Sweeney RT, McClary AC, Myers BR, et al. Identification of recurrent SMO and BRAF mutations in ameloblastomas. Nature genetics 2014;46:722-5.

36.Brown NA, Rolland D, McHugh JB, et al. Activating FGFR2-RAS-BRAF mutations in ameloblastoma. Clinical cancer research : an official journal of the American Association for Cancer Research 2014;20:5517-26.

37.Holderfield M, Deuker MM, McCormick F, McMahon M. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nature reviews Cancer 2014;14:455-67.

38.Diniz MG, Gomes CC, Guimaraes BV, et al. Assessment of BRAFV600E and SMOF412E mutations in epithelial odontogenic tumours. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2015;36:5649-53.

39.Orton RJ, Sturm OE, Vyshemirsky V, et al. Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. The Biochemical journal 2005;392:249-61.

40.Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. The Biochemical journal 2000;351 Pt 2:289-305.

41.Davie JR, Spencer VA. Signal transduction pathways and the modification of chromatin structure. Progress in nucleic acid research and molecular biology 2001;65:299-340.

42.Lum L, Beachy PA. The Hedgehog response network: sensors, switches, and routers. Science (New York, NY) 2004;304:1755-9.

43.Rimkus TK, Carpenter RL, Qasem S, Chan M, Lo HW. Targeting the Sonic Hedgehog Signaling Pathway: Review of Smoothened and GLI Inhibitors. Cancers 2016;8.

44.Baudino TA. Targeted Cancer Therapy: The Next Generation of Cancer Treatment. Current drug discovery technologies 2015;12:3-20.

45.Onnis G, Palmieri G, Montesu MA, Satta R. Second primary melanoma on a patient undergoing vemurafenib therapy. A case report. International journal of dermatology 2017.

46.Zhang W, Heinzmann D, Grippo JF. Clinical Pharmacokinetics of Vemurafenib. Clinical pharmacokinetics 2017.

47.Hertzman Johansson C, Egyhazi Brage S. BRAF inhibitors in cancer therapy. Pharmacology & therapeutics 2014;142:176-82.

48.Gencler B, Gonul M. Cutaneous Side Effects of BRAF Inhibitors in Advanced Melanoma: Review of the Literature. Dermatology research and practice 2016;2016:5361569.

49.Doan HQ, Silapunt S, Migden MR. Sonidegib, a novel smoothened inhibitor for the treatment of advanced basal cell carcinoma. OncoTargets and therapy 2016;9:5671-8.

50.Heikinheimo K, Kurppa KJ, Elenius K. Novel targets for the treatment of ameloblastoma. Journal of dental research 2015;94:237-40.

51.Menzies AM, Long GV. Systemic treatment for BRAF-mutant melanoma: where do we go next? The Lancet Oncology 2014;15:e371-81.

52.Paraiso KH, Fedorenko IV, Cantini LP, et al. Recovery of phospho-ERK activity allows melanoma cells to escape from BRAF inhibitor therapy. British journal of cancer 2010;102:1724-30.

53.Kim J, Aftab BT, Tang JY, et al. Itraconazole and arsenic trioxide inhibit Hedgehog pathway activation and tumor growth associated with acquired resistance to smoothened antagonists. Cancer cell 2013;23:23-34.

54.Kaye FJ, Ivey AM, Drane WE, Mendenhall WM, Allan RW. Clinical and radiographic response with combined BRAF-targeted therapy in stage 4 ameloblastoma. Journal of the National Cancer Institute 2015;107:378.

55.Tan S, Pollack JR, Kaplan MJ, Colevas AD, West RB. BRAF inhibitor treatment of primary BRAF-mutant ameloblastoma with pathologic assessment of response. Oral surgery, oral medicine, oral pathology and oral radiology 2016;122:e5-7.

56.Faden DL, Algazi A. Durable treatment of ameloblastoma with single agent BRAFi Re: Clinical and radiographic response with combined BRAF-targeted therapy in stage 4 ameloblastoma. Journal of the National Cancer Institute 2017;109.

57.Marshall CJ. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Current opinion in genetics & development 1994;4:82-9.

58.Moodie SA, Wolfman A. The 3Rs of life: Ras, Raf and growth regulation. Trends in genetics : TIG 1994;10:44-8.

59.Morrison DK, Cutler RE. The complexity of Raf-1 regulation. Current opinion in cell biology 1997;9:174-9.

60.Cutler RE, Jr., Stephens RM, Saracino MR, Morrison DK. Autoregulation of the Raf-1 serine/threonine kinase. Proceedings of the National Academy of Sciences of the United States of America 1998;95:9214-9.

61.Bonner TI, Oppermann H, Seeburg P, et al. The complete coding sequence of the human raf oncogene and the corresponding structure of the c-raf-1 gene. Nucleic acids research 1986;14:1009-15.

62.Beck TW, Huleihel M, Gunnell M, Bonner TI, Rapp UR. The complete coding sequence of the human A-raf-1 oncogene and transforming activity of a human A-raf carrying retrovirus. Nucleic acids research 1987;15:595-609.

63.Fukui M, Yamamoto T, Kawai S, Maruo K, Toyoshima K. Detection of a raf-related and two other transforming DNA sequences in human tumors maintained in nude mice. Proceedings of the National Academy of Sciences of the United States of America 1985;82:5954-8.

64.Stanton VP, Jr., Cooper GM. Activation of human raf transforming genes by deletion of normal amino-terminal coding sequences. Molecular and Cellular Biology 1987;7:1171-9.

65.Cantwell-Dorris ER, O''Leary JJ, Sheils OM. BRAFV600E: implications for carcinogenesis and molecular therapy. Molecular Cancer Therapeutics 2011;10:385-94.

66.Rubinstein JC, Sznol M, Pavlick AC, et al. Incidence of the V600K mutation among melanoma patients with BRAF mutations, and potential therapeutic response to the specific BRAF inhibitor PLX4032. Journal of Translational Medicine 2010;8:67.

67.Pakneshan S, Salajegheh A, Smith RA, Lam AK. Clinicopathological relevance of BRAF mutations in human cancer. Pathology 2013;45:346-56.

68.Falini B, Martelli MP, Tiacci E. BRAF V600E mutation in hairy cell leukemia: from bench to bedside. Blood 2016;128:1918-27.

69.Haroche J, Charlotte F, Arnaud L, et al. High prevalence of BRAF V600E mutations in Erdheim-Chester disease but not in other non-Langerhans cell histiocytoses. Blood 2012;120:2700-3.

70.Manfredi L, Meyer N, Tournier E, et al. Highly Concordant Results Between Immunohistochemistry and Molecular Testing of Mutated V600E BRAF in Primary and Metastatic Melanoma. Acta dermato-venereologica 2016;96:630-4.

71.Sun J, Zhang J, Lu J, et al. Immunohistochemistry is highly sensitive and specific for detecting the BRAF V600E mutation in papillary thyroid carcinoma. International journal of clinical and experimental pathology 2015;8:15072-8.

72.Midha A, Dearden S, McCormack R. EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: a systematic review and global map by ethnicity (mutMapII). American journal of cancer research 2015;5:2892-911.

73.Atwood SX, Sarin KY, Whitson RJ, et al. Smoothened variants explain the majority of drug resistance in basal cell carcinoma. Cancer cell 2015;27:342-53.

74.Li M, Stoneking M. A new approach for detecting low-level mutations in next-generation sequence data. Genome biology 2012;13:R34.

75.Brunner P, Bihl M, Jundt G, Baumhoer D, Hoeller S. BRAF p.V600E mutations are not unique to ameloblastoma and are shared by other odontogenic tumors with ameloblastic morphology. Oral oncology 2015;51:e77-8.

76.Iwabata H, Yoshida M, Komatsu Y. Proteomic analysis of organ-specific post-translational lysine-acetylation and -methylation in mice by use of anti-acetyllysine and -methyllysine mouse monoclonal antibodies. Proteomics 2005;5:4653-64.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top