跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/17 12:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭 軒
研究生(外文):Shanny Hsuan Kuo
論文名稱:以巢式RT-PCR偵測石蠟包埋組織中貓冠狀病毒作為輔助病理診斷之方法
論文名稱(外文):Molecular Detection of Feline Coronaviruses in Formalin-Fixed and Paraffin-Embedded Tissue (FFPE) by nested RT-PCRs: a Diagnosis-Aiding Approach
指導教授:張惠雯張惠雯引用關係龐 飛鄭謙仁
指導教授(外文):Hui-Wen ChangVictor Fei PangChian-Ren Jeng
口試日期:2017-05-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:分子暨比較病理生物學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:88
中文關鍵詞:貓傳染性腹膜炎貓冠狀病毒福馬林固定和石蠟包埋組織巢式反轉錄聚合酶鏈反應S基因突變
外文關鍵詞:Feline infectious peritonitis (FIP)feline coronavirusformalin-fixed and paraffin-embedded tissueRT-PCRspike mutation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:369
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
貓傳染性腹膜炎(Feline infectious peritonitis, FIP)是由貓冠狀病毒(feline coronavirus, FCoV)所引起的貓隻致死性疾病。其非特異性的臨床症狀使此疾病生前診斷仍然非常困難。應用組織病理學檢查合併免疫組織化學染色(Immunohistochemistry, IHC)是目前公認診斷FIP的黃金標準。然而IHC的診斷敏感度卻會大大受限於組織中含有病毒抗原的細胞量的多寡。小樣本量採樣以及模棱兩可的IHC染色訊號分佈等局限性使得常用於組織病理學檢查的福馬林固定和石蠟包埋組織(FFPE)之生檢組織檢查成為獸醫病理學家診斷FIP最具挑戰性的樣材之一。先前文獻已證明,常規針對3′非轉譯區(3'' untranslated region, 3''UTR)進行增幅的聚合酶連鎖反應(Polymerase chain reaction, PCR)對於新鮮組織中FIP的診斷是非特異性的。此外,近期有兩個在突起蛋白基因(Spike protein gene, S gene)被發現的突變,分別是S基因中位於1058處的甲氧氨基(M)至亮氨酸(L)氨基酸突變(M1058L)與絲氨酸(S)至丙氨酸(A)氨基酸突變(S1060A),兩者一起可以在血清型I貓冠狀病毒感染病例中,區分大於 95%貓傳染性腹膜炎病毒(Feline infectious peritonitis virus, FIPV)與貓腸道型冠狀病毒(Feline enteric coronavirus, FECV),而該發現具有潛在的診斷價值。本研究的目的是比較常規針對3′非轉譯區(Consensus nRT-PCR targeting 3’UTR)與針對S基因兩個突變(nRT-PCR targeting the two mutations in S gene)的巢式反轉錄聚合酶鏈反應(nested reverse transcription polymerase chain reaction, nRT-PCR)兩診斷技術的差異以提升由FFPE組織中進行FIP的診斷。透過針對貓隻GAPDH的持家基因的反轉錄聚合酶鏈反應(RT-PCR)評估FFPE組織中RNA的質量後,本研究之最終研究群體包括38個組織病理學與免疫組織化學證實的FIP貓隻和22隻非FIP貓隻。本實驗利用這些臨床與組織病理學下懷疑FIP案例的FFPE組織檢體作為RNA的來源進行巢式反轉錄聚合酶鏈反應(nRT-PCR)。本實驗使用常規針對3′非轉譯區的nRT-PCR成功在31/38(82%)FFPE FIP樣品中提取了RNA與擴增貓冠狀病毒核酸,而利用S基因特異性nRT-PCR可檢測到17/38(42%)陽性病例,此外對血清型1病例進行定序與後續氨基酸比對後發現17例中有16例在S基因中出現M1058L和S1060A兩個突變之其中一個。兩種方法均未於非FIP貓的FFPF組織檢出陽性結果。本研究發現,結合組織病理學和IHC染色結果,常規的nRT-PCR和S特異性nRT-PCR皆能夠成功檢測來自FFPE樣本的貓冠狀病毒RNA,且此方法可成功應用於IHC信號不明確而可能被誤解為陰性的病例中以提升FIP診斷效率,這兩種方法都可作為FIP診斷和由FFPE組織進行FIP回顧性研究的有用工具。
Feline infectious peritonitis (FIP), caused by feline coronavirus (FCoV), is a lethal disease in cats. The clinical signs are non-specific and antemortem diagnosis remains challenging and frustrating. Appling histopathology combined with immunohistochemical (IHC) staining is considered as the gold standard for FIP diagnosis. However, the sensitivity of the IHC method depends much on the numbers of intralesional antigen-bearing cells. Due to the limitations of small sampling sizes as well as the equivocal IHC staining pattern in some specimens, formalin-fixed and paraffin-embedded tissue (FFPE) biopsies frequently submitted for histopathological examination for FIP are the most challenging specimens for pathologists. It has been demonstrated that the consensus PCR targeting 3’UTR alone is non-specific for diagnosis of FIP in fresh tissues. Moreover, two recently described mutations, the substitution of methionine (M) to leucine (L) amino acid mutation at position 1058 (M1058L) and the substitution of serine (S) to alanine (A) amino acid mutation at position 1060 (S1060A) in spike (S) gene, which together can distinguish feline infectious peritonitis virus (FIPV) from feline enteric coronavirus (FECV) in >95% of serotype I FCoV-infected cases in freshly-collected specimens, have suggested a potential diagnostic value. The aim of this study was to compare the uses of a consensus nested RT-PCR (nRT-PCR) targeting 3’UTR and a nRT-PCR targeting the two mutations in S gene in aiding the diagnosis of FIP in FFPE tissues. After evaluation of the RNA quality in FFPE tissues by a RT-PCR targeting the housekeeping gene of feline GAPDH, a total of 38 histopathologically and immunohistochemically confirmed FIP cases and 22 non-FIP cases were used as the source of RNA and examined nRT-PCRs. We have successfully extracted RNA and amplified FCoV genes in 31/38 (82%) FIP cases using consensus nRT-PCR, whereas 17/38 (42%) FIP cases were detected using the S-specific nRT-PCR. Following subsequent sequencing, 16 out of 17 serotype 1 cases had one of the two mutations (M1058L and S1060A) in the S gene. None of the FFPF tissues from these non-FIP cats were positive by both methods. We have demonstrated that in combined with histopathology and IHC staining, both consensus nRT-PCR and S-specific nRT-PCR were capable of detecting viral RNA from FFPE samples where IHC signals were equivocal and possibly misinterpreted as negativity. Both methods serve as a useful tool in supporting FIP diagnosis and for the retrospective study of FIP in archival FFPE tissues.
Contents
中文摘要 I
Abstract III
Contents V
List of tables VIII
List of figures IX
Introduction 1
1.1 Background of the study 1
Literature review 3
2.1 History of feline infectious peritonitis and feline coronavirus 3
2.2 Virus taxonomy 4
2.3 Structure of the FCoV virion 4
2.3.1 Genomic organization 4
2.3.2 Viral proteins 5
2.3.2.1 Spike protein (S) 5
2.3.2.2 Envelope protein (E) 6
2.3.2.3 Membrane protein (M) 7
2.3.2.4 Nucleocapsid protein (N) 7
2.3.2.5 Accessory proteins (3a–c, 7a, and 7b) 8
2.4 Mutations in structural proteins and accessory proteins associated with virus virulence and attenuation 8
2.5 Serotypes of the feline coronaviruses 11
2.6 Pathotypes and immunopathogenesis of the feline coronaviruses 11
2.6.1 Feline enteric coronavirus (FECV) 12
2.6.2 Host immunity toward FECV Infection 13
2.6.3 Feline infectious peritonitis virus (FIPV) 13
2.6.4 Host immunity toward FIPV infection 14
2.7 Clinical manifestations of feline infectious peritonitis: wet, dry, or a combination of the two 17
2.8 Diagnostic tests for feline infectious peritonitis 17
2.8.1 Indirect tests for FIP diagnosis 18
2.8.1.1 Clinical manifestation and clinical pathology parameters 18
2.8.1.2 Serology 19
2.8.1.3 Analysis of effusions 19
2.8.2 Direct tests for FIP diagnosis 20
2.8.2.1 Histopathological examination of tissues 20
2.8.2.2 Immunological staining of FCoV antigen 21
2.8.2.3 Laboratory PCR-based diagnostics 22
2.9 The difficulty in antemortem diagnosis of dry form FIP 23
Materials and methods 25
3.1 Case collection 25
3.2 Histopathological scoring 26
3.3 Immunohistochemistry scoring 27
3.4 RNA extraction and Reverse transcription 29
3.5 Polymerase chain reaction (PCR) and DNA sequencing 30
3.6 Sensitivity test of the S-specific nRT-PCRs 32
3.7 Data analyses 33
Results 34
4.1 Histopathological findings 34
4.2 Immunohistochemical characteristics 35
4.3 Sensitivity assessment of spike mutation-detection nRT-PCR for the FIPV-I 36
4.4 Results of consensus nRT-PCR and combined nRT-PCR plus sequencing approach 37
Discussion 39
5.1 A brief summary of the present findings 39
5.2 Histopathological findings of FIP: characteristic but not always confirmative 40
5.3 Drawbacks of immunohistochemistry: low sensitivity with potential nonspecific or background labeling 41
5.4 Practice of PCR-based assays in FFPE samples histopathologically suggestive of FIP 43
5.4.1 Sensitivity of the present PCR-based methods 44
5.4.2 Spike mutation (M1058L and S1060A): a manifestation for systemic viral shedding or development of virulence? 47
5.4.3 Diagnostic specificity in the present PCR-based methods 51
5.4.4 Limitations of the present study (PCR-based diagnostic tool: consensus and spike-specific methods) 52
5.4.5 Suggestions for future research 53
Conclusions 55
Tables 56
Figures 66
References 73

List of tables
TABLE 1. Criteria used for immunohistochemistry scoring. 56
TABLE 2. Immunohistochemical grade based on IHC score. 57
TABLE 3. PCR primer pairs used in this study. 58
TABLE 4. Immunohistochemistry scoring, FFPE collected time, and results of the consensus reverse transcriptase nested polymerase chain reaction (nRT-PCR) and combined nRT-PCR plus sequencing approach for cats of the feline infectious peritonitis (FIP) group. 60
TABLE 5. The results of the consensus nRT-PCR and combined spike-specific nRT-PCR plus sequencing approach in FFPE samples. 63
TABLE 6. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV), and overall accuracy of consensus nRT-PCR and spike-specific nRT-PCR plus sequencing for the diagnosis of feline infectious peritonitis (FIP). 64
TABLE 7. Differences in feline coronavirus (FCoV) detection rate in equivocal immunohistochemistry cases (grade I) by PCR-based methods. 65

List of figures
FIG. 1. The taxonomic classification of feline coronavirus. 66
FIG. 2. The genomic organization of FCoV genome and the primer sets location utilized in the present study. 67
FIG. 3. Tissue grading of the signal expression of feline coronavirus (FCoV) detected by immunohistochemistry in various organs obtained from FIP and non-FIP groups. 68
FIG. 4. Agarose gel photograph of the nested-PCR amplification using general FCoV primers, spike specific primers, and feline GAPDH-specific primers in the present study. 69
FIG. 5. Comparative sensitivity of the previously published and modified feline coronavirus spike-mutation detection RT-PCRs for detection of two critical mutations in spike gene. 70
FIG. 6. Agarose gel photograph of the unsuccessful nested-PCR amplification using previously published spike-specific primers (Chang et al., 2012) in FFPE samples. 71
FIG. 7. Amino acid alignment of the sequenced data obtained from serotype 1-infected cats in the present study. 72
1.Addie, D., Belak, S., Boucraut-Baralon, C., Egberink, H., Frymus, T., Gruffydd-Jones, T., Hartmann, K., Hosie, M.J., Lloret, A., Lutz, H., Marsilio, F., Pennisi, M.G., Radford, A.D., Thiry, E., Truyen, U., Horzinek, M.C., 2009. Feline infectious peritonitis. ABCD guidelines on prevention and management. J Feline Med Surg 11, 594-604.
2.Addie, D.D., Paltrinieri, S., Pedersen, N.C., 2004. Recommendations from workshops of the second international feline coronavirus/feline infectious peritonitis symposium. J Feline Med Surg 6, 125-130.
3.Addie, D.D., Schaap, I.A., Nicolson, L., Jarrett, O., 2003. Persistence and transmission of natural type I feline coronavirus infection. J Gen Virol 84, 2735-2744.
4.Bálint, Á., Farsang, A., Zádori, Z., Hornyák, Á., Dencső, L., Almazán, F., Enjuanes, L., Belák, S., 2012. Molecular characterization of feline infectious peritonitis virus strain DF-2 and studies of the role of ORF3abc in viral cell tropism. J Virol 86, 6258-6267.
5.Bank-Wolf, B.R., Stallkamp, I., Wiese, S., Moritz, A., Tekes, G., Thiel, H.J., 2014. Mutations of 3c and spike protein genes correlate with the occurrence of feline infectious peritonitis. Vet Microbiol 173, 177-188.
6.Baric, R.S., Nelson, G.W., Fleming, J.O., Deans, R.J., Keck, J.G., Casteel, N., Stohlman, S.A., 1988. Interactions between coronavirus nucleocapsid protein and viral RNAs: implications for viral transcription. J Virol 62, 4280-4287.
7.Benetka, V., Kubber-Heiss, A., Kolodziejek, J., Nowotny, N., Hofmann-Parisot, M., Mostl, K., 2004. Prevalence of feline coronavirus types I and II in cats with histopathologically verified feline infectious peritonitis. Vet Microbiol 99, 31-42.
8.Bhudevi, B., Weinstock, D., 2003. Detection of bovine viral diarrhea virus in formalin fixed paraffin embedded tissue sections by real time RT-PCR (Taqman). J Virol Methods 109, 25-30.
9.Black, J.W., 1980. Recovery and in vitro cultivation of a coronavirus from laboratory-induced cases of feline infectious peritonitis (FIP). Vet Med Small Anim Clin 75. 811-814.
10.Bosch, B.J., van der Zee, R., de Haan, C.A., Rottier, P.J., 2003. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol 77, 8801-8811.
11.Brierley, I., 1995. Ribosomal frameshifting viral RNAs. J Gen Virol 76 1885-1892.
12.Brown, M.A., Troyer, J.L., Pecon-Slattery, J., Roelke, M.E., O''Brien, S.J., 2009. Genetics and pathogenesis of feline infectious peritonitis virus. Emerg Infect Dis 15, 1445-1452.
13.Bussolati, G., Leonardo, E., 2008. Technical pitfalls potentially affecting diagnoses in immunohistochemistry. J Clin Pathol 61, 1184.
14.Can-Sahna, K., Soydal Ataseven, V., Pinar, D., Oguzoglu, T.C., 2007. The detection of feline coronaviruses in blood samples from cats by mRNA RT-PCR. J Feline Med Surg 9, 369-372.
15.Chang, H.W., de Groot, R.J., Egberink, H.F., Rottier, P.J., 2010. Feline infectious peritonitis: insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene. J Gen Virol 91.
16.Chang, H.W., Egberink, H.F., Halpin, R., Spiro, D.J., Rottier, P.J., 2012. Spike protein fusion peptide and feline coronavirus virulence. Emerg Infect Dis 18, 1089-1095.
17.Compton, S.R., Rogers, D.B., Holmes, K.V., Fertsch, D., Remenick, J., McGowan, J.J., 1987. In vitro replication of mouse hepatitis virus strain A59. J Virol 61, 1814-1820.
18.Cornelissen, E., Dewerchin, H.L., Van Hamme, E., Nauwynck, H.J., 2007. Absence of surface expression of feline infectious peritonitis virus (FIPV) antigens on infected cells isolated from cats with FIP. Vet Microbiol 121, 131-137.
19.Cornelissen, E., Dewerchin, H.L., Van Hamme, E., Nauwynck, H.J., 2009. Absence of antibody-dependent, complement-mediated lysis of feline infectious peritonitis virus-infected cells. Virus Res 144, 285-289.
20.Cowley, T.J., Weiss, S.R., 2010. Murine coronavirus neuropathogenesis: determinants of virulence. J Neurovirol 16, 427-434.
21.Cronin, M., Pho M Fau - Dutta, D., Dutta D Fau - Stephans, J.C., Stephans Jc Fau - Shak, S., Shak S Fau - Kiefer, M.C., Kiefer Mc Fau - Esteban, J.M., Esteban Jm Fau - Baker, J.B., Baker, J.B., 2004. Measurement of gene expression in archival paraffin-embedded tissues: development and performance of a 92-gene reverse transcriptase-polymerase chain reaction assay. Am J Pathol 164, 35-42.
22.de Groot-Mijnes, J.D., van Dun, J.M., van der Most, R.G., de Groot, R.J., 2005. Natural history of a recurrent feline coronavirus infection and the role of cellular immunity in survival and disease. J Virol 79.
23.de Haan, C.A., Haijema, B.J., Schellen, P., Wichgers Schreur, P., te Lintelo, E., Vennema, H., Rottier, P.J., 2008. Cleavage of group 1 coronavirus spike proteins: how furin cleavage is traded off against heparan sulfate binding upon cell culture adaptation. J Virol 82, 6078-6083.
24.de Haan, C.A., Masters, P.S., Shen, X., Weiss, S., Rottier, P.J., 2002. The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host. Virology 296, 177-189.
25.de Haan, C.A., Stadler, K., Godeke, G.J., Bosch, B.J., Rottier, P.J., 2004. Cleavage inhibition of the murine coronavirus spike protein by a furin-like enzyme affects cell-cell but not virus-cell fusion. J Virol 78, 6048-6054.
26.Dedeurwaerder, A., Desmarets, L.M., Olyslaegers, D.A., Vermeulen, B.L., Dewerchin, H.L., Nauwynck, H.J., 2013. The role of accessory proteins in the replication of feline infectious peritonitis virus in peripheral blood monocytes. Vet Microbiol 162, 447-455.
27.Dewerchin, H.L., Cornelissen E Fau - Nauwynck, H.J., Nauwynck, H.J., 2006. Feline infectious peritonitis virus-infected monocytes internalize viral membrane-bound proteins upon antibody addition. J Gen Virol 87, 1685-1690.
28.Doenges, S.J., Weber, K., Dorsch, R., Fux, R., Fischer, A., Matiasek, L.A., Matiasek, K., Hartmann, K., 2016a. Detection of feline coronavirus in cerebrospinal fluid for diagnosis of feline infectious peritonitis in cats with and without neurological signs. J Feline Med Surg 18, 104-109.
29.Doenges, S.J., Weber, K., Dorsch, R., Fux, R., Hartmann, K., 2016b. Comparison of real-time reverse transcriptase polymerase chain reaction of peripheral blood mononuclear cells, serum and cell-free body cavity effusion for the diagnosis of feline infectious peritonitis. J Feline Med Surg.
30.Drechsler, Y., Alcaraz, A., Bossong, F.J., Collisson, E.W., Diniz, P.P., 2011. Feline coronavirus in multicat environments. Vet Clin North Am Small Anim Pract 41, 1133-1169.
31.Dye, C., Siddell, S.G., 2005. Genomic RNA sequence of feline coronavirus strain FIPV WSU-79/1146. J Gen Virol 86, 2249-2253.
32.Dye, C., Temperton, N., Siddell, S.G., 2007. Type I feline coronavirus spike glycoprotein fails to recognize aminopeptidase N as a functional receptor on feline cell lines. J Gen Virol 88, 1753-1760.
33.Fakhrai-Rad, H., Pourmand, N., Ronaghi, M., 2002. Pyrosequencing: an accurate detection platform for single nucleotide polymorphisms. Hum Mutat 19, 479-485.
34.Feldman, B.F., Jortner, B.S., 1964. Clinico-pathology conference. J Am Vet Med Assoc 144, 1409-1411.
35.Felten, S., Weider, K., Doenges, S., Gruendl, S., Matiasek, K., Hermanns, W., Mueller, E., Matiasek, L., Fischer, A., Weber, K., Hirschberger, J., Wess, G., Hartmann, K., 2015. Detection of feline coronavirus spike gene mutations as a tool to diagnose feline infectious peritonitis. J Feline Med Surg 19, 321-335.
36.Fischer, Y., Sauter-Louis, C., Hartmann, K., 2012. Diagnostic accuracy of the Rivalta test for feline infectious peritonitis. Vet Clin Pathol 41, 558-567.
37.Giordano, A., Paltrinieri S Fau - Bertazzolo, W., Bertazzolo W Fau - Milesi, E., Milesi E Fau - Parodi, M., Parodi, M., 2005. Sensitivity of Tru-cut and fine needle aspiration biopsies of liver and kidney for diagnosis of feline infectious peritonitis. Vet Clin Pathol 34, 368-374.
38.Giori, L., Giordano, A., Giudice, C., Grieco, V., Paltrinieri, S., 2011. Performances of different diagnostic tests for feline infectious peritonitis in challenging clinical cases. J Small Anim Pract 52, 152-157.
39.González, J.M., Gomez-Puertas, P., Cavanagh, D., Gorbalenya, A.E., Enjuanes, L., 2003. A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch Virol 148, 2207-2235.
40.Gorbalenya, A.E., Enjuanes, L., Ziebuhr, J., Snijder, E.J., 2006. Nidovirales: evolving the largest RNA virus genome. Virus Res 117, 17-37.
41.Gunn-Moore, D.A., Gruffydd-Jones, T.J., Harbour, D.A., 1998. Detection of feline coronaviruses by culture and reverse transcriptase-polymerase chain reaction of blood samples from healthy cats and cats with clinical feline infectious peritonitis. Vet Microbiol 62, 193-205.
42.Haagmans, B.L., Egberink, H.F., Horzinek, M.C., 1996. Apoptosis and T-cell depletion during feline infectious peritonitis. J Virol 70, 8977-8983.
43.Haijema, B.J., Volders, H., Rottier, P.J., 2004. Live, attenuated coronavirus vaccines through the directed deletion of group-specific genes provide protection against feline infectious peritonitis. J Virol 78, 3863-3871.
44.Hartmann, K., 2005. Feline infectious peritonitis. Vet Clin North Am Small Anim Pract 35, 39-79.
45.Hartmann, K., Binder, C., Hirschberger, J., Cole, D., Reinacher, M., Schroo, S., Frost, J., Egberink, H., Lutz, H., Hermanns, W., 2003. Comparison of different tests to diagnose feline infectious peritonitis. J Vet Intern Med 17, 781-790.
46.Heald-Sargent, T., Gallagher, T., 2012. Ready, Set, Fuse! The coronavirus spike protein and acquisition of fusion competence. Viruses 4, 557-580.
47.Herrewegh, A.A., de Groot, R.J., Cepica, A., Egberink, H.F., Horzinek, M.C., Rottier, P.J., 1995a. Detection of feline coronavirus RNA in feces, tissues, and body fluids of naturally infected cats by reverse transcriptase PCR. J Clin Microbiol 33.
48.Herrewegh, A.A., Smeenk, I., Horzinek, M.C., Rottier, P.J., de Groot, R.J., 1998. Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. J Virol 72, 4508-4514.
49.Herrewegh, A.A., Vennema, H., Horzinek, M.C., Rottier, P.J., de Groot, R.J., 1995b. The molecular genetics of feline coronaviruses: comparative sequence analysis of the ORF7a/7b transcription unit of different biotypes. Virology 212, 622-631.
50.Hohdatsu, T., Nakamura, M., Ishizuka, Y., Yamada, H., Koyama, H., 1991. A study on the mechanism of antibody-dependent enhancement of feline infectious peritonitis virus infection in feline macrophages by monoclonal antibodies. Arch Virol 120, 207-217.
51.Hohdatsu, T., Okada, S., Ishizuka, Y., Yamada, H., Koyama, H., 1992. The prevalence of types I and II feline coronavirus infections in cats. J Vet Med Sci 54, 557-562.
52.Hohdatsu, T., Tokunaga, J., Koyama, H., 1994. The role of IgG subclass of mouse monoclonal antibodies in antibody-dependent enhancement of feline infectious peritonitis virus infection of feline macrophages. Arch Virol 139, 273-285.
53.Holzworth, J., 1963. Some important disorders of cats. Cornell Vet 53, 157-160.
54.Jacobse-Geels, H.E., Daha, M.R., Horzinek, M.C., 1980. Isolation and characterization of feline C3 and evidence for the immune complex pathogenesis of feline infectious peritonitis. J Immunol 125, 1606-1610.
55.Jakob, H., 1914. Therapeutsiche, kasuisitische und statistische Mitteilungen aus der Klinik für kleine Haustiere an der Reichstierarzneischule in Utrecht (Holland), Jahrgang 1912/13. Z Tiermed Microbiol Immunol 18, 193.
56.Kennedy, M., Boedeker, N., Gibbs, P., Kania, S., 2001. Deletions in the 7a ORF of feline coronavirus associated with an epidemic of feline infectious peritonitis. Vet Microbiol 81, 227-234.
57.Kida, K., Hohdatsu, T., Kashimoto-Tokunaga, J., Koyama, H., 2000. Neutralization of feline infectious peritonitis virus: preparation of monoclonal antibody that shows cell tropism in neutralizing activity after viral absorption into the cells. Arch Virol 145, 1-12.
58.Kim, J., Chae, C., 2001. Differentiation of porcine circovirus 1 and 2 in formalin-fixed, paraffin-wax-embedded tissues from pigs with postweaning multisystemic wasting syndrome by in-situ hybridisation. Res Vet Sci 70, 265-269.
59.Kipar, A., Baptiste, K., Barth, A., Reinacher, M., 2006. Natural FCoV infection: Cats with FIP exhibit significantly higher viral loads than healthy infected cats. J Feline Med Surg 8, 69-72.
60.Kipar, A., Bellmann S Fau - Kremendahl, J., Kremendahl J Fau - Kohler, K., Kohler K Fau - Reinacher, M., Reinacher, M., 1998. Cellular composition, coronavirus antigen expression and production of specific antibodies in lesions in feline infectious peritonitis. Vet Immunol Immunopathol 65, 243-257.
61.Kipar, A., Kohler, K., Leukert, W., Reinacher, M., 2001. A comparison of lymphatic tissues from cats with spontaneous feline infectious peritonitis (FIP), cats with FIP virus infection but no FIP, and cats with no infection. J Comp Pathol 125, 182-191.
62.Kipar, A., Meli, M.L., 2014. Feline infectious peritonitis: still an enigma? Vet Pathol 51, 505-526.
63.Kipar, A., Meli, M.L., Baptiste, K.E., Bowker, L.J., Lutz, H., 2010. Sites of feline coronavirus persistence in healthy cats. J Gen Virol 91, 1698-1707.
64.Krafft, A.E., Duncan, B.W.F.A.U.B., Bijwaard, K.E.F.A.U.T., Taubenberger, J.K.F.A.U.L., Lichy, J.H., 1997. Optimization of the isolation and amplification of RNA from formalin-fixed, paraffin-embedded Tissue: The Armed Forces Institute of Pathology Experience and Literature Review. Mol Diagn 2, 217-230.
65.Kummrow, M., Meli, M.L., Haessig, M., Goenczi, E., Poland, A., Pedersen, N.C., Hofmann-Lehmann, R., Lutz, H., 2005. Feline coronavirus serotypes 1 and 2: seroprevalence and association with disease in Switzerland. Clin Diagn Lab Immunol 12, 1209-1215.
66.Leong, A.S., 2004. Pitfalls in diagnostic immunohistology. Adv Anat Pathol 11, 86-93.
67.Li, X., Scott, F.W., 1994. Detection of feline coronaviruses in cell cultures and in fresh and fixed feline tissues using polymerase chain reaction. Vet Microbiol 42, 65-77.
68.Licitra, B.N., Millet, J.K., Regan, A.D., Hamilton, B.S., Rinaldi, V.D., Duhamel, G.E., Whittaker, G.R., 2013. Mutation in spike protein cleavage site and pathogenesis of feline coronavirus. Emerg Infect Dis 19, 1066-1073.
69.Lim, K.P., Liu, D.X., 2001. The missing link in coronavirus assembly. Retention of the avian coronavirus infectious bronchitis virus envelope protein in the pre-Golgi compartments and physical interaction between the envelope and membrane proteins. J Biol Chem 276, 17515-17523.
70.Lin, C.M., Jeng, C.R., Hsiao, S.H., Chang, C.C., Liu, C.H., Tsai, Y.C., Chia, M.Y., Pang, V.F., 2009a. Development and evaluation of an indirect in situ polymerase chain reaction for the detection of porcine circovirus type 2 in formalin-fixed and paraffin-embedded tissue specimens. Vet Microbiol 138, 225-234.
71.Lin, C.N., Su, B.L., Wang, C.H., Hsieh, M.W., Chueh, T.J., Chueh, L.L., 2009b. Genetic diversity and correlation with feline infectious peritonitis of feline coronavirus type I and II: a 5-year study in Taiwan. Vet Microbiol 136, 233-239.
72.Litster, A.L., Pogranichniy, R., Lin, T.L., 2013. Diagnostic utility of a direct immunofluorescence test to detect feline coronavirus antigen in macrophages in effusive feline infectious peritonitis. Vet J 198, 362-366.
73.Longstaff, L., Porter, E., Crossley, V.J., Hayhow, S.E., Helps, C.R., Tasker, S., 2017. Feline coronavirus quantitative reverse transcriptase polymerase chain reaction on effusion samples in cats with and without feline infectious peritonitis. J Feline Med Surg 19, 240-245.
74.Macabeo-Ong, M., Ginzinger Dg Fau - Dekker, N., Dekker N Fau - McMillan, A., McMillan A Fau - Regezi, J.A., Regezi Ja Fau - Wong, D.T.W., Wong Dt Fau - Jordan, R.C.K., Jordan, R.C., 2002. Effect of duration of fixation on quantitative reverse transcription polymerase chain reaction analyses. Mod Pathol 15, 979-987.
75.Madu, I.G., Roth, S.L., Belouzard, S., Whittaker, G.R., 2009. Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide. J Virol 83, 7411-7421.
76.Maeda, J., Repass, J.F., Maeda, A., Makino, S., 2001. Membrane topology of coronavirus E protein. Virology 281, 163-169.
77.Masters, P.S., 2006. The molecular biology of coronaviruses. Adv Virus Res 66, 193-292.
78.Meli, M., Kipar, A., Muller, C., Jenal, K., Gonczi, E., Borel, N., Gunn-Moore, D., Chalmers, S., Lin, F., Reinacher, M., Lutz, H., 2004. High viral loads despite absence of clinical and pathological findings in cats experimentally infected with feline coronavirus (FCoV) type I and in naturally FCoV-infected cats. J Feline Med Surg 6, 69-81.
79.Montali, R.J., Strandberg, J.D., 1972. Extraperitoneal Lesions in Feline Infectious Peritonitis. Vet Pathol 9, 109-121.
80.O''Reilly, K.J., Fishman, B., Hitchcock, L.M., 1979. Feline infectious peritonitis: isolation of a coronavirus. Vet Rec 104, 348.
81.Okello, J.B.A., Zurek, J., Devault, A.M., Kuch, M., Okwi, A.L., Sewankambo, N.K., Bimenya, G.S., Poinar, D., Poinar, H.N., 2010. Comparison of methods in the recovery of nucleic acids from archival formalin-fixed paraffin-embedded autopsy tissues. Anal Biochem 400, 110-117.
82.Paltrinieri, S., Parodi, M.C., Cammarata, G., 1999. In vivo diagnosis of feline infectious peritonitis by comparison of protein content, cytology, and direct immunofluorescence test on peritoneal and pleural effusions. J Vet Diagn Invest 11, 358-361.
83.Paltrinieri, S., Ponti, W., Comazzi, S., Giordano, A., Poli, G., 2003. Shifts in circulating lymphocyte subsets in cats with feline infectious peritonitis (FIP): pathogenic role and diagnostic relevance. Vet Immunol Immunopathol 96, 141-148.
84.Pedersen, N.C., 1976. Morphologic and physical characteristics of feline infectious peritonitis virus and its growth in autochthonous peritoneal cell cultures. Am J Vet Res 37, 567-572.
85.Pedersen, N.C., 1987. Virologic and immunologic aspects of feline infectious peritonitis virus infection. Adv Exp Med Biol 218, 529-550.
86.Pedersen, N.C., 2009. A review of feline infectious peritonitis virus infection: 1963–2008. J Feline Med Surg 11, 225-258.
87.Pedersen, N.C., 2014a. An update on feline infectious peritonitis: Diagnostics and therapeutics. Vet J 201, 133-141.
88.Pedersen, N.C., 2014b. An update on feline infectious peritonitis: Virology and immunopathogenesis. Vet J 201, 123-132.
89.Pedersen, N.C., Allen, C.E., Lyons, L.A., 2008. Pathogenesis of feline enteric coronavirus infection. J Feline Med Surg 10, 529-541.
90.Pedersen, N.C., Black, J.W., Boyle, J.F., Evermann, J.F., McKeirnan, A.J., Ott, R.L., 1984. Pathogenic differences between various feline coronavirus isolates. Adv Exp Med Biol 173, 365-380.
91.Pedersen, N.C., Boyle, J.F., Floyd, K., Fudge, A., Barker, J., 1981. An enteric coronavirus infection of cats and its relationship to feline infectious peritonitis. Am J Vet Res 42, 368-377.
92.Pedersen, N.C., Eckstrand, C., Liu, H., Leutenegger, C., Murphy, B., 2015. Levels of feline infectious peritonitis virus in blood, effusions, and various tissues and the role of lymphopenia in disease outcome following experimental infection. Vet Microbiol 175, 157-166.
93.Pedersen, N.C., Floyd, K., 1985. Experimental studies with three new strains of feline infectious peritonitis virus: FIPV- UCD2, FIPV-UCD3 and FIPV-UCD4. Comp Cont Educ Prac Vet 7, 1001-1011.
94.Pedersen, N.C., Liu, H., Dodd, K.A., Pesavento, P.A., 2009. Significance of coronavirus mutants in feces and diseased tissues of cats suffering from feline infectious peritonitis. Viruses 1, 166-184.
95.Pedersen, N.C., Liu, H., Scarlett, J., Leutenegger, C.M., Golovko, L., Kennedy, H., Kamal, F.M., 2012. Feline infectious peritonitis: role of the feline coronavirus 3c gene in intestinal tropism and pathogenicity based upon isolates from resident and adopted shelter cats. Virus Res 165.
96.Pedersen, N.C., Sato, R., Foley, J.E., Poland, A.M., 2004. Common virus infections in cats, before and after being placed in shelters, with emphasis on feline enteric coronavirus. J Feline Med Surg 6, 83-88.
97.Pedersen, N.C., Ward, J., Mengeling, W.L., 1978. Antigenic relationship of the feline infectious peritonitis virus to coronaviruses of other species. Arch Virol 58, 45-53.
98.Porter, E., Tasker, S., Day, M., Harley, R., Kipar, A., Siddell, S., Helps, C., 2014. Amino acid changes in the spike protein of feline coronavirus correlate with systemic spread of virus from the intestine and not with feline infectious peritonitis. Vet Res 45, 49.
99.Ramos-Vara, J.A., 2005. Technical aspects of immunohistochemistry. Vet Pathol 42, 405-426.
100.Regan, A.D., Shraybman, R., Cohen, R.D., Whittaker, G.R., 2008. Differential role for low pH and cathepsin-mediated cleavage of the viral spike protein during entry of serotype II feline coronaviruses. Vet Microbiol 132, 235-248.
101.Rottier, P.J., Nakamura, K., Schellen, P., Volders, H., Haijema, B.J., 2005. Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutations in the feline coronavirus spike protein. J Virol 79, 14122-14130.
102.Rottier, P.J., Welling, G.W., Welling-Wester, S., Niesters, H.G., Lenstra, J.A., Van der Zeijst, B.A., 1986. Predicted membrane topology of the coronavirus protein E1. Biochemistry 25, 1335-1339.
103.Sánchez, C.M., Izeta, A., Sánchez-Morgado, J.M., Alonso, S., Sola, I., Balasch, M., Plana-Durán, J., Enjuanes, L., 1999. Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence. J Virol 73, 7607-7618.
104.Sharif, S., Arshad, S.S., Hair-Bejo, M., Omar, A.R., Zeenathul, N.A., Alazawy, A., 2010. Diagnostic methods for feline coronavirus: a review. Vet Med Int, 1-7.
105.Simons, F.A., Vennema, H., Rofina, J.E., Pol, J.M., Horzinek, M.C., Rottier, P.J., Egberink, H.F., 2005. A mRNA PCR for the diagnosis of feline infectious peritonitis. J Virol Methods 124, 111-116.
106.Spaan, W., Cavanagh, D., Horzinek, M.C., 1988. Coronaviruses: structure and genome expression. J Gen Virol 69, 2939-2952.
107.Sparkes, A.H., Gruffydd-Jones, T.J., Harbour, D.A., 1991. Feline infectious peritonitis: a review of clinicopathological changes in 65 cases, and a critical assessment of their diagnostic value. Vet Rec 129, 209-212.
108.Stohlman, S.A., Fleming, J.O., Patton, C.D., Lai, M.M., 1983. Synthesis and subcellular localization of the murine coronavirus nucleocapsid protein. Virology 130, 527-532.
109.Sturman, L.S., Holmes, K.V., Behnke, J., 1980. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J Virol 33, 449-462.
110.Takano, T., Tomiyama, Y., Katoh, Y., Nakamura, M., Satoh, R., Hohdatsu, T., 2011. Mutation of neutralizing/antibody-dependent enhancing epitope on spike protein and 7b gene of feline infectious peritonitis virus: Influences of viral replication in monocytes/macrophages and virulence in cats. Virus Res 156, 72-80.
111.Tammer, R., Evensen, O., Lutz, H., Reinacher, M., 1995. Immunohistological demonstration of feline infectious peritonitis virus antigen in paraffin-embedded tissues using feline ascites or murine monoclonal antibodies. Vet Immunol Immunopathol 49, 177-182.
112.Tyrrell, D.A.J., Almeida, J.D., Cunningham, C.H., Dowdle, W.R., Hofstad, M.S., McIntosh, K., Tajima, M., Zakstelskaya, L.Y., Easterday, B.C., Kapikian, A., Bingham, R.W., 1975. Coronaviridae. Intervirol 5, 76-82.
113.Vennema, H., 1999. Genetic drift and genetic shift during feline coronavirus evolution. Vet Microbiol 69, 139-141.
114.Vennema, H., Heijnen, L., Rottier, P.J., Horzinek, M.C., Spaan, W.J., 1992. A novel glycoprotein of feline infectious peritonitis coronavirus contains a KDEL-like endoplasmic reticulum retention signal. J Virol 66, 4951-4956.
115.Vennema, H., Poland, A., Hawkins, K.F., Pedersen, N.C., 1995. A comparison of the genomes of FECVs and FIPVs and what they tell us about the relationships between feline coronaviruses and their evolution. Feline Pract 23, 40-44.
116.Vogel, L., Van der Lubben, M., te Lintelo, E.G., Bekker, C.P., Geerts, T., Schuijff, L.S., Grinwis, G.C., Egberink, H.F., Rottier, P.J., 2010. Pathogenic characteristics of persistent feline enteric coronavirus infection in cats. Vet Res 41, 71.
117.von Ahlfen, S., Missel, A., Bendrat, K., Schlumpberger, M., 2007. Determinants of RNA quality from FFPE samples. PLoS ONE 2, e1261.
118.Wang, Y.-T., Su, B.-L., Hsieh, L.-E., Chueh, L.-L., 2013. An outbreak of feline infectious peritonitis in a Taiwanese shelter: epidemiologic and molecular evidence for horizontal transmission of a novel type II feline coronavirus. VET RES 44, 57.
119.Ward, J.M., 1970. Morphogenesis of a virus in cats with experimental feline infectious peritonitis. Virol 41, 191-194.
120.Weiss, R.C., Dodds, W.J., Scott, F.W., 1980. Disseminated intravascular coagulation in experimentally induced feline infectious peritonitis. Am J Vet Res 41, 663-671.
121.Weiss, R.C., Scott, F.W., 1981. Pathogenesis of feline infectious peritonitis: nature and development of viremia. Am J Vet Res 42, 382-390.
122.Wolfe, L.G., Griesemer, R.A., 1966. Feline infectious peritonitis. Pathol Vet 3, 255-270.
123.Ziebuhr, J., Snijder, E.J., Gorbalenya, A.E., 2000. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 81, 853-879.
124.Zook, B.C., King, N.W., Robison, R.L., McCombs, H.L., 1968. Ultrastructural evidence for the viral etiology of feline infectious peritonitis. Vet Pathol 5, 91-95.
125.Zúñiga, S., Sola, I., Moreno, J.L., Sabella, P., Plana-Durán, J., Enjuanes, L., 2007. Coronavirus nucleocapsid protein is an RNA chaperone. Virology 357, 215-227.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊