|
[1] Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. Mining multi-labeldata. InData mining and knowledge discovery handbook, pages 667–685. Springer,2009. [2] Ioannis Katakis, Grigorios Tsoumakas, and Ioannis Vlahavas. Multilabel text classi-fication for automated tag suggestion.ECML PKDD discovery challenge, 75, 2008. [3] Konstantinos Trohidis, Grigorios Tsoumakas, George Kalliris, and Ioannis P Vla-havas. Multi-label classification of music into emotions. InISMIR, volume 8, pages325–330, 2008. [4] Andr ́e Elisseeff and Jason Weston. A kernel method for multi-labelled classification.InAdvances in neural information processing systems, pages 681–687, 2001. [5] F Briggs, B Lakshminarayanan, L Neal, XZ Fern, R Raich, SJK Hadley, AS Hadley,and MG Betts. New methods for acoustic classification of multiple simultaneousbird species in a noisy environment. InIEEE International Workshop on MachineLearning for Signal Processing, pages 1–8, 2013. [6] Yu-Ping Wu and Hsuan-Tien Lin. Progressivek-labelsets for cost-sensitive multi-labelclassification.Machine Learning, 2016. Accepted for Special Issue of ACML 2016. [7] Hung-Yi Lo, Ju-Chiang Wang, Hsin-Min Wang, and Shou-De Lin. Cost-sensitivemulti-label learning for audio tag annotation and retrieval.IEEE Transactions onMultimedia, 13(3):518–529, 2011. [8] Yi Zhang and Jeff G Schneider. Multi-label output codes using canonical correlationanalysis. InAISTATS, pages 873–882, 2011.43 [9] Chun-Sung Ferng and Hsuan-Tien Lin. Multi-label classification with error-correctingcodes. InACML, pages 281–295, 2011. [10] Raj Chandra Bose and Dwijendra K Ray-Chaudhuri. On a class of error correctingbinary group codes.Information and control, 3(1):68–79, 1960. [11] Chun-Liang Li and Hsuan-Tien Lin. Condensed filter tree for cost-sensitive multi-label classification. InICML, pages 423–431, 2014. [12] Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Classifier chainsfor multi-label classification.Machine learning, 85(3):333–359, 2011. [13] Grigorios Tsoumakas and Ioannis Vlahavas. Random k-labelsets: An ensemblemethod for multilabel classification. InEuropean Conference on Machine Learning,pages 406–417. Springer, 2007. [14] Farbound Tai and Hsuan-Tien Lin. Multilabel classification with principal label spacetransformation.Neural Computation, 24(9):2508–2542, 2012. [15] Yao-Nan Chen and Hsuan-Tien Lin. Feature-aware label space dimension reductionfor multi-label classification. InAdvances in Neural Information Processing Systems,pages 1529–1537, 2012. [16] Zijia Lin, Guiguang Ding, Mingqing Hu, and Jianmin Wang. Multi-label classificationvia feature-aware implicit label space encoding. InICML, pages 325–333, 2014. [17] Weiwei Cheng, Eyke H ̈ullermeier, and Krzysztof J Dembczynski. Bayes optimal mul-tilabel classification via probabilistic classifier chains. InProceedings of the 27thinternational conference on machine learning (ICML-10), pages 279–286, 2010. [18] Alina Beygelzimer, John Langford, and Pradeep Ravikumar. Multiclass classificationwith filter trees.Preprint, June, 2, 2007. [19] Grigorios Tsoumakas, Eleftherios Spyromitros-Xioufis, Jozef Vilcek, and Ioannis Vla-havas. Mulan: A java library for multi-label learning.Journal of Machine LearningResearch, 12:2411–2414, 2011. [20] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.LIBLINEAR: A library for large linear classification.Journal of Machine LearningResearch, 9:1871–1874, 2008. [21] Andy Liaw and Matthew Wiener. Classification and regression by randomforest.Rnews, 2(3):18–22, 2002. [22] Han-Hsing Tu and Hsuan-Tien Lin. One-sided support vector regression for multiclasscost-sensitive classification. InProceedings of the 27th International Conference onMachine Learning (ICML-10), pages 1095–1102, 2010. [23] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector ma-chines.ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011.Software available athttp://www.csie.ntu.edu.tw/~cjlin/libsvm
|