|
[1]V. Hedau, D. Hoiem, and D. Forsyth. Recovering the Spatial Layout of Cluttered Rooms. In International Conference on Computer Vision (ICCV), 2009. [2]D. Hoiem, A. A. Efros, and M. Hebert. Recovering surface layout from an image. In International Journal of Computer Vision (IJCV), 2007. [3]D. C. Lee, M. Hebert and T. Kanade. Geometric Reasoning for Single Image Structure Recovery. In Computer Vision and Pattern Recognition (CVPR), 2009. [4]A. Mallya and S. Lazebnik. Learning Informative Edge Maps for Indoor Scene Layout Prediction. In International Conference on Computer Vision (ICCV), 2015. [5]S. Dasgupta, K. Fang, K. Chen, and S. Savarese. Delay: Robust Spatial Layout Estimation for Cluttered Indoor Scenes. In Computer Vision and Pattern Recognition (CVPR), 2016. [6]M. E. Tipping, C. M. Bishop, Baysian image super-resolution, Neural Information Processing Systems (NIPS), 2003. [7]C. Y. Lee, V. Badrinarayanan. T. Malisiewicz and A. Rabinovich. RoomNet: End-to-End Room Layout Estimation. arXiv:1703.06241v1 2017 [8]Y. Zhang, F. Yu, S. Song, P. Xu, A. Seff, and J. Xiao. Largescale Scene Understanding Challenge: Room layout estimation, accessed on Sep 15 (2015).
[9]O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer Assisted Intervention (MICCAI), Springer, 2015. [10]V. B adrinarayanan, A. Kendall, and R. Cipolla. "Segnet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.” arXiv: 1511.00561 2016 [11]Y. Ren, C. Chen, S. Li, and C.-C. J. Kuo. A Coarse-to-Fine Indoor Layout Estimation (CFILE) Method. In Asian Conference on Computer Vision (ACCV) 2016
|