跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/07 21:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃泳霖
研究生(外文):Yung-Lin Huang
論文名稱:針對影片合成應用之三維模型於彩色及深度顯示系統
論文名稱(外文):3D Modeling using RGB-D Data for Video Synthesis
指導教授:簡韶逸
指導教授(外文):Shao-Yi Chien
口試委員:陳宏銘杭學鳴賴尚宏楊家輝盧奕璋莊永裕林彥宇孫民
口試委員(外文):Homer H. ChenHsueh-Ming HangShang-Hong LaiJar-Ferr YangYi-Chang LuYung-Yu ChuangYen-Yu LinMin Sun
口試日期:2017-04-17
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:資訊網路與多媒體研究所
學門:電算機學門
學類:網路學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:106
中文關鍵詞:三維模型三維重建彩色及深度深度處理背景模型表面偵測擴增影片視角合成
外文關鍵詞:3D modeling3D reconstructionRGB-Ddepth processingbackground modelingsurface detectionaugmented videoview synthesis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來三維影像及影片已達到很高的成熟度,現今市場上存在著很多三維相機及三維顯示器的產品。在現今的三維系統中,最廣泛使用的格式是彩色及深度並存的影片。本論文的重點即在利用彩色及深度的資料,進行三維影片的合成。
首先,本論文會先簡介三維系統中的各項流程,並且指出系統中重要的研究議題及挑戰。本論文提出的演算法及處理三維影片的技巧共分成三個部份:第一部份是處理深度圖片的演算法,第二部份是偵測三維模型的技術,第三部份是利用前述的技巧進行影片合成的應用。最後會總結本論文的重點及貢獻,並討論未來能再繼續研究的議題。
第一部份針對深度圖片中不完善的區域進行改良,本論文提出了兩個演算法。第一個演算法利用了影像邊緣的特性,執行了對深度圖片的完善運算,改善了存在物體邊界附近錯誤及未偵測到的深度值。另外由於深度圖片精確度的關係,在三維模型中產生了深度量化後的錯誤,第二個演算法利用了一個優化框架,減低了因深度量化錯誤產生的問題。處理過後的資料在顯示三維點雲場景時,提供了更好的視覺效果。
第二部份提出了兩個偵測三維點雲中三維模型的演算法。第一個演算法根據超級體積像素使用了聚合式表面成長的技術,用於偵測三維點雲中的平面及曲面。第二個演算法從多視角彩色及深度影片中提取了三維點雲背景模型。本論文在此部份提出的演算法對無組織三維資料進行了幾何推理,如此便可提供理解場景的可能性,進而實行三維影片的合成。
第三部份實作了兩個影片合成的應用。第一個應用使用了背景表面模型合成多視角擴增影片,將額外資訊在不影響原觀賞效果下合成進多視角影片。第二個應用利用了有效率的三維濾波器合成虛擬視角影片,為原本視角數量有限的多視角影片提供了更多可觀看的視角。這些利用本論文提出的方法合成的影片,提供了在彩色及深度顯示系統中不同以往的觀看經驗。
Recently, three-dimensional (3D) image and video systems have attained a high level of maturity. There are many off-the-shelf 3D acquisition and display devices. In current 3D systems, RGB plus depth (RGB-D) videos are the most widely-used format. This dissertation focuses on the techniques using RGB-D data for video synthesis applications.
First of all, we introduce the systems and point out the challenges in the systems. Then, we divide the proposed algorithms and techniques into three parts: depth processing, 3D modeling, and video synthesis applications. Finally, we give a conclusion and discussion for future research.
The first part states two proposed techniques for defective depth images. The missing and uncertain depth values near object boundaries are corrected using edge-aware depth completion. The depth quantization errors introduced by depth image precision are reduced using an optimization framework. The processed data give better visual quality when visualizing the point-cloud 3D scene.
The second part states two proposed 3D modeling techniques for point-cloud data. The planar and curved surfaces are detected using supervoxel-based agglomerative surface growing. The point-cloud background modeling is extracted from a multi-view RGB-D video. The geometric reasoning of unorganized data provides the possibility of understanding the data and synthesizing additional information.
The third part states two implemented video synthesis applications. Multi-view augmented videos are synthesized using surface-based background modeling. Virtual view
videos are synthesized using an efficient 3D filter. The synthesized videos shows different viewing experience of RGB-D display systems.
1 Introduction 1
1.1 Overview of 3D Image and Video Systems . . . . . . . . . . . . . . . . 1
1.1.1 3D Representation . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 3D Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 3D Transmission . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.4 3D Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 RGB-D Image and Video Display Systems . . . . . . . . . . . . . . . . 4
1.2.1 Depth Image . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 3D Point Cloud Model using Depth Image . . . . . . . . . . . 6
1.3 Challenges and Contributions . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . 10
I Depth Processing 13
2 Edge-Aware Depth Completion 15
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Unreliable Region Detection . . . . . . . . . . . . . . . . . . . 18
2.3.2 Depth Pixel Invalidation . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Candidate Depth Propagation . . . . . . . . . . . . . . . . . . 20
2.3.4 Depth Pixel Filling . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3 Depth Quantization Error Reduction 25
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.2 Objective Evaluation . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
II 3D Modeling 35
4 Surface Detection for Single-View RGB-D Images 37
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.1 Supervoxel Segmentation . . . . . . . . . . . . . . . . . . . . 39
4.3.2 Non-Duplicated Random Seeds . . . . . . . . . . . . . . . . . 40
4.3.3 Agglomerative Surface Growing . . . . . . . . . . . . . . . . . 41
4.3.4 Refinements and Planar Recombinations . . . . . . . . . . . . . 43
4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.1 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.2 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.3 Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.4 Augmenting Information . . . . . . . . . . . . . . . . . . . . . 45
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5 Background Modeling for Multi-View RGB-D Videos 51
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.1 Multi-View 3D Reconstruction . . . . . . . . . . . . . . . . . . 53
5.3.2 Updating Multi-View Points . . . . . . . . . . . . . . . . . . . 56
5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
III Video Synthesis Applications 61
6 Augmented Reality Video Synthesis 63
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2.1 Augmented Video . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2.2 3D Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3.1 3D Background Modeling . . . . . . . . . . . . . . . . . . . . 66
6.3.2 Multi-Surface Extraction and Updating . . . . . . . . . . . . . 67
6.3.3 Augmented Video Synthesis . . . . . . . . . . . . . . . . . . . 69
6.3.4 RGB-D Moving Object Masking . . . . . . . . . . . . . . . . . 69
6.3.5 Augmented Region Determination . . . . . . . . . . . . . . . . 69
6.3.6 Augmented Information Integration . . . . . . . . . . . . . . . 70
6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7 Virtual View Video Synthesis 81
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.2.1 One-Pass Forward Warping . . . . . . . . . . . . . . . . . . . 82
7.2.2 Backward Warping . . . . . . . . . . . . . . . . . . . . . . . . 83
7.3 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.3.1 Model-to-Frame Projection . . . . . . . . . . . . . . . . . . . . 85
7.3.2 Pull-Push Algorithm . . . . . . . . . . . . . . . . . . . . . . . 86
7.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.4.1 MSR 3D video . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.4.2 Computer-generated sequence . . . . . . . . . . . . . . . . . . 92
7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8 Conclusion 95
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Reference 99
[1] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for the evaluation of RGB-D SLAM systems,” in Proceedings of the International Conference on Intelligent Robot Systems (IROS), Oct. 2012.
[2] M. P. Martorell, A. Maki, S. Martull, Y. Ohkawa, and K. Fukui, “Towards a simulation driven stereo vision system,” in Proceedings of the 21st International Conference on Pattern Recognition (ICPR), Nov 2012, pp. 1038–1042.
[3] A. Richtsfeld, T. Mörwald, J. Prankl, M. Zillich, and M. Vincze, “Segmentation of unknown objects in indoor environments,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct 2012, pp. 4791–4796.
[4] B. Oehler, J. Stueckler, J. Welle, D. Schulz, and S. Behnke, “Efficient multiresolution plane segmentation of 3d point clouds,” in International Conference on Intelligent Robotics and Applications (ICIRA). Springer, 2011, pp. 145–156.
[5] A. Anand, H. S. Koppula, T. Joachims, and A. Saxena, “Contextually guided semantic labeling and search for three-dimensional point clouds,” The International Journal of Robotics Research, vol. 32, no. 1, pp. 19–34, 2013.
[6] H. S. Koppula, A. Anand, T. Joachims, and A. Saxena, “Semantic labeling of 3D point clouds for indoor scenes,” in Proceedings of the 24th International Conference on Neural Information Processing Systems (NIPS). USA: Curran Associates Inc., 2011, pp. 244–252. [Online]. Available: http://dl.acm.org/citation.cfm?id=2986459.2986487
[7] A. Smolic, “3D video and free viewpoint video - from capture to display,” Pattern Recognition, vol. 44, no. 9, pp. 1958 – 1968, 2011, computer Analysis of Images and Patterns.
[8] K. Muller, P. Merkle, and T. Wiegand, “3-D video representation using depth maps,” Proceedings of the IEEE, vol. 99, no. 4, pp. 643–656, Apr. 2011.
[9] S.-F. Tsai, C.-C. Cheng, C.-T. Li, and L.-G. Chen, “A real-time 1080p 2D-to-3D video conversion system,” IEEE Transactions on Consumer Electronics, vol. 57, no. 2, pp. 915–922, May 2011.
[10] J. Han, L. Shao, D. Xu, and J. Shotton, “Enhanced computer vision with Microsoft Kinect sensor: A review,” IEEE Transactions on Cybernetics, vol. 43, no. 5, pp. 1318–1334, Oct. 2013.
[11] K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: An ultra-thin high performance monolithic camera array,” ACM Trans. Graph., vol. 32, no. 6, pp. 166:1–166:13, Nov. 2013.
[12] G. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview of the high efficiency video coding (HEVC) standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649–1668, Dec. 2012.
[13] A. Vetro, T. Wiegand, and G. Sullivan, “Overview of the stereo and multiview video coding extensions of the H.264/MPEG-4 AVC standard,” Proceedings of the IEEE, vol. 99, no. 4, pp. 626–642, Apr. 2011.
[14] C. Fehn, “Depth-image-based rendering (DIBR), compression, and transmission for a new approach on 3D-TV,” in Proc. SPIE 5291, Stereoscopic Displays and Virtual Reality Systems XI, 2004.
[15] C. Wheatstone, “Contributions to the physiology of vision.–part the first. on some remarkable, and hitherto unobserved, phenomena of binocular vision,” Philosophical transactions of the Royal Society of London, pp. 371–394, 1838.
[16] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed. Cambridge University Press, ISBN: 0521540518, 2004.
[17] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo tourism: Exploring photo collections in 3D,” ACM Trans. Graph., vol. 25, no. 3, pp. 835–846, Jul. 2006.
[18] K.-C. Wei, Y.-L. Huang, and S.-Y. Chien, “Point-based model construction for free-viewpoint TV,” in IEEE International Conference on Consumer Electronics - Berlin (ICCE-Berlin), Sept. 2013, pp. 220–221.
[19] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon, “Kinectfusion: Real-time dense surface mapping and tracking,” in Proceedings of the 10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Oct 2011, pp. 127–136.
[20] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon, “Kinectfusion: Real-time 3D reconstruction and interaction using a moving depth camera,” in Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology (UIST), 2011, pp. 559–568.
[21] J. Shen and S.-C. Cheung, “Layer depth denoising and completion for structured-light RGB-D cameras,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2013, pp. 1187–1194.
[22] D. Miao, J. Fu, Y. Lu, S. Li, and C. W. Chen, “Texture-assisted Kinect depth inpainting,” in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), May 2012, pp. 604–607.
[23] L. Chen, H. Lin, and S. Li, “Depth image enhancement for Kinect using region growing and bilateral filter,” in Proceedings of the 21st International Conference on Pattern Recognition (ICPR), Nov 2012, pp. 3070–3073.
[24] J. Liu, X. Gong, and J. Liu, “Guided inpainting and filtering for Kinect depth maps,” in Proceedings of the 21st International Conference on Pattern Recognition (ICPR), Nov 2012, pp. 2055–2058.
[25] A. Telea, “An image inpainting technique based on the fast marching method,” Journal of Graphics Tools, vol. 9, no. 1, pp. 23–34, 2004.
[26] P. K. Nathan Silberman, Derek Hoiem and R. Fergus, “Indoor segmentation and support inference from RGBD images,” in European Conference on Computer Vision (ECCV), 2012.
[27] A. Boev, D. Hollosi, A. Gotchev, and K. Egiazarian, “Classification and simulation of stereoscopic artifacts in mobile 3DTV content,” in Proc. SPIE 7237, Stereoscopic Displays and Applications XX, 2009.
[28] G. Zhang, J. Jia, T. T. Wong, and H. Bao, “Consistent depth maps recovery from a video sequence,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 6, pp. 974–988, June 2009.
[29] C. H. Hung, L. Xu, and J. Jia, “Consistent binocular depth and scene flow with chained temporal profiles,” International Journal of Computer Vision, pp. 1–22, Augest 2012.
[30] S. P. Lipshitz, R. A.Wannamaker, and J. Vanderkooy, “Quantization and dither: A theoretical survey,” Journal of the Audio Engineering Society, vol. 40, no. 5, pp. 355–375, May 1992.
[31] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.
[32] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, April 2004.
[33] R. Schnabel, R. Wahl, and R. Klein, “Efficient RANSAC for point-cloud shape detection,” in Computer graphics forum, vol. 26, no. 2. Wiley Online Library, 2007, pp. 214–226.
[34] D. Holz and S. Behnke, Fast Range Image Segmentation and Smoothing Using Approximate Surface Reconstruction and Region Growing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 61–73. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-33932-5_7
[35] S. C. Stein, M. Schoeler, J. Papon, and F. Wörgötter, “Object partitioning using local convexity,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2014, pp. 304–311.
[36] J. Papon, A. Abramov, M. Schoeler, and F. Wörgötter, “Voxel cloud connectivity segmentation - supervoxels for point clouds,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2013, pp. 2027–2034.
[37] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004. [Online]. Available: http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
[38] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments,” Int. J. Rob. Res., vol. 31, no. 5, pp. 647–663, Apr. 2012. [Online]. Available: http://dx.doi.org/10.1177/0278364911434148
[39] M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and A. Kolb, “Real-time 3D reconstruction in dynamic scenes using point-based fusion,” in International Conference on 3D Vision (3DV), June 2013, pp. 1–8.
[40] O. van Kaick, H. Zhang, G. Hamarneh, and D. Cohen-Or, “A survey on shape correspondence,” Computer Graphics Forum, vol. 30, no. 6, pp. 1681–1707, 2011.
[41] B. K. Horn, “Closed-form solution of absolute orientation using unit quaternions,” JOSA A, vol. 4, no. 4, pp. 629–642, 1987.
[42] R. Diaz, S. Hallman, and C. Fowlkes, “Detecting dynamic objects with multi-view background subtraction,” in IEEE International Conference on Computer Vision (ICCV), Dec. 2013, pp. 273–280.
[43] M. Domañski, T. Grajek, K. Klimaszewski, M. Kurc, O. Stankiewicz, J. Stankowski, and K. Wegner, “Poznan multiview video test sequences and camera parameters,” in ISO/IEC JTC1/SC29/WG11 MPEG 2009/M17050, Xian, China, Oct. 2009.
[44] F. Zhou, H.-L. Duh, and M. Billinghurst, “Trends in augmented reality tracking, interaction and display: A review of ten years of ISMAR,” in IEEE/ACM International Symposium on Mixed and Augmented Reality (ISMAR), Sept 2008, pp. 193–202.
[45] P.-C. Wu, Y.-H. Tsai, and S.-Y. Chien, “Stable pose tracking from a planar target with an analytical motion model in real-time applications,” in IEEE International Workshop on Multimedia Signal Processing (MMSP), Sept 2014, pp. 1–6.
[46] H. Kato and M. Billinghurst, “Marker tracking and HMD calibration for a video-based augmented reality conferencing system,” in IEEE/ACM International Workshop on Augmented Reality (IWAR), 1999, pp. 85–94.
[47] G. Simon, A. Fitzgibbon, and A. Zisserman, “Markerless tracking using planar structures in the scene,” in IEEE and ACM International Symposium on Augmented Reality (ISAR 2000), oct 2000, pp. 120–128.
[48] T. Lee and T. Hollerer, “Handy AR: Markerless inspection of augmented reality objects using fingertip tracking,” in IEEE International Symposium on Wearable Computers, Oct 2007, pp. 83–90.
[49] K. Kim, N.-y. Park, and W. Woo, “Vision-based all-in-one solution for augmented reality and its storytelling applications,” The Visual Computer, vol. 30, no. 4, pp. 417–429, 2014.
[50] A. O. Ulusoy and J. L. Mundy, “Image-based 4-d Reconstruction Using 3-d Change Detection,” in European Conference on Computer Vision (ECCV), ser. Lecture Notes in Computer Science, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds. Springer International Publishing, Sep. 2014, pp. 31–45.
[51] Y.-L. Huang, K.-C.Wei, and S.-Y. Chien, “3D background modeling in multi-view RGB-D video,” in Proceedings of the ACM International Conference on Multimedia (Short Paper), ser. MM ’15. ACM, 2015.
[52] S. Y. Chien,W. K. Chan, Y. H. Tseng, and H. Y. Chen, “Video object segmentation and tracking framework with improved threshold decision and diffusion distance,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 23, no. 6, pp. 921–934, June 2013.
[53] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski, “High-quality video view interpolation using a layered representation,” ACM Trans. Graph., vol. 23, no. 3, pp. 600–608, Aug. 2004.
[54] M. Bertalmio, A. L. Bertozzi, and G. Sapiro, “Navier-stokes, fluid dynamics, and image and video inpainting,” in Computer Vision and Pattern Recognition (CVPR), 2001.
[55] K.-J. Oh, S. Yea, and Y.-S. Ho, “Hole filling method using depth based in-painting for view synthesis in free viewpoint television and 3-D video,” in Picture Coding Symposium, May 2009.
[56] I. Daribo and H. Saito, “A novel inpainting-based layered depth video for 3DTV,” IEEE Transactions on Broadcasting, vol. 57, no. 2, pp. 533 – 541, June 2011.
[57] K. Müller, A. Smolic, K. Dix, P. Merkle, P. Kauff, and T. Wiegand, “View synthesis for advanced 3D video systems,” EURASIP Journal on Image and Video Processing, vol. 2008, pp. 1–11, 2008.
[58] Y. Mori, N. Fukushima, T. Yendo, T. Fujii, and M. Tanimoto, “View generation with 3D warping using depth information for FTV,” Journal of Image Communication, vol. 24, no. 1-2, pp. 65–72, January 2009.
[59] D. Berjon, A. Hornung, F. Moran, and A. Smolic, “Evaluation of backward mapping DIBR for FVV applications,” in IEEE International Conference on Multimedia and Expo (ICME), July 2011.
[60] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumigraph,” in SIGGRAPH, New York, NY, USA, 1996.
[61] R. Marroquim, M. Kraus, and P. R. Cavalcanti, “Efficient point-based rendering using image reconstruction,” in Proceedings Symposium on Point-Based Graphics, 2007, pp. 101–108.
[62] View Synthesis Software Manual, ISO/IEC JTC1/SC29/WG11, MPEG, September 2009, release 3.5.
[63] S. P. McKee and D. G. Taylor, “The precision of binocular and monocular depth judgments in natural settings,” Journal of vision, vol. 10, no. 10, pp. 5–5, 2010.
[64] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3D shapenets: A deep representation for volumetric shapes,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1912–1920.
[65] I. Biederman, “Recognition-by-components: a theory of human image understanding.” Psychological review, vol. 94, no. 2, p. 115, 1987.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top