|
[1] S. Caelles, K.-K. Maninis, J. Pont-Tuset, L. Leal-Taixe, D. Cremers, and L. V. Gool. One-shot video object segmentation. In CVPR, 2017. [2] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. V. Gool, M. Gross, and A. Sorkine-Hornung. A benchmark dataset and evaluation methodology for video object segmentation. In CVPR, 2016.[3] J. Chang, D. Wei, and J. W. Fisher III. A video representation using temporal superpixels. In CVPR, 2013. [4] M. Grundmann, V. Kwatra, M. Han, and I. A. Essa. Effi- cient hierarchical graph-based video segmentation. In CVPR, 2010. [5] S. A. Ramakanth and R. V. Babu. Seamseg: Video object segmentation using patch seams. In CVPR, 2014. [6] Q. Fan, F. Zhong, D. Lischinski, D. Cohen-Or, and B. Chen. Jumpcut: Non-successive mask transfer and interpolation for video cutout. ACM Trans. Graph., 34(6), 2015. [7] F. Perazzi, O. Wang, M. Gross, and A. Sorkine-Hornung. Fully connected object proposals for video segmentation. In ICCV, 2015. [8] N. Nicolas Marki, F. Perazzi, O. Wang, and A. Sorkine Hornung. Bilateral space video segmentation. In CVPR, 2016. [9] A. Faktor and M. Irani. Video segmentation by non-local consensus voting. In BMVC, 2014. [10] A. Papazoglou and V. Ferrari. Fast object segmentation in unconstrained video. In ICCV, 2013. 21 [11] P. Tokmakov, K. Alahari, and C. Schmid. Learning motion patterns in videos. arXiv:1612.07217, 2016. [12] S. D. Jain, B. Xiong, and K. Grauman. Fusionseg: Learning to combine motion and appearance for fully automatic segmention of generic objects in videos. arXiv:1701.05384, 2017. [13] W. Wang and J. Shen. Super-trajectory for video segmentation. arXiv:1702.08634, 2017. [14] Y.-H. Tsai, M.-H. Yang, and M. J. Black. Video segmentation via object flow. In CVPR, 2016. [15] A. Khoreva, F. Perazzi, R. Benenson, B. Schiele, and A. Sorkine-Hornung. Learning video object segmentation from static images. In CVPR, 2017. [16] V. Jampani, R. Gadde, and P. V. Gehler. Video propagation networks. In CVPR, 2017 [17] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV, 2015. [18] A. Faktor and M. Irani. Video segmentation by non-local consensus voting. In BMVC, 2014. [19] J. Shen, W. Wenguan, and F. Porikli. Saliency-Aware geodesic video object segmentation. In CVPR, 2015. [20] B. Taylor, V. Karasev, and S. Soatto. Causal video object segmentation from persistence of occlusions. In CVPR, 2015. [21] F. Perazzi, P. Krahenb ‥ uhl, Y. Pritch, and A. Hornung. ‥ Saliency filters: Contrast based filtering for salient region detection. In CVPR, 2012. [22] S. D. Jain and K. Grauman. Click carving: Segmenting objects in video with point clicks. In HCOMP, 2016. [23] T. V. Spina and A. X. Falcao. Fomtrace: Interactive video segmentation by image graphs and fuzzy object models. arXiv preprint arXiv:1606.03369, 2016. 22 [24] Q. Fan, F. Zhong, D. Lischinski, D. Cohen-Or, and B. Chen. Jumpcut: Non-successive mask transfer and interpolation for video cutout. SIGGRAPH Asia, 2015. [25] F. Zhong, X. Qin, Q. Peng, and X. Meng. Discontinuityaware video object cutout. TOG, 2012. [26] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015. [27] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Urtasun, and A. Yuille. The role of context for object detection and semantic segmentation in the wild. In CVPR, 2014. [28] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Con- ’ tour detection and hierarchical image segmentation. TPAMI, 33(5):898–916, 2011. [29] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv:1606.00915, 2016. [30] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Epicflow: Edge-preserving interpolation of correspondences for optical flow. In CVPR, 2015. [31] Simonyan, K. and Zisserman, A. Two-stream convolutional networks for action recognition in videos. CoRR, abs/1406.2199, 2014. Published in Proc. NIPS, 2014. [32] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox. Flownet 2.0: Evolution of optical flow estimation with deep networks. In CVPR, 2017. [33] P. Krahenbuhl and V. Koltun. Efficient inference in fully connected crfs with gaussian edge potentials. In NIPS.
|