|
[1] J. Bromley, I. Guyon, Y. LeCun, E. S¨ackinger, and R. Shah. Signature verification using a” siamese” time delay neural network. In Advances in Neural Information Processing Systems, pages 737–744, 1994. [2] D. Cai, K. Chen, Y. Qian, and J.-K. K¨am¨ar¨ainen. Convolutional low-resolution fine-grained classification. arXiv preprint arXiv:1703.05393, 2017. [3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009. [4] T. Gebru, J. Krause, Y. Wang, D. Chen, J. Deng, and L. Fei-Fei. Fine-grained car detection for visual census estimation. In AAAI, pages 4502–4508, 2017. [5] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM international conference on Multimedia, pages 675– 678. ACM, 2014. [6] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In European Conference on Computer Vision, pages 694–711. Springer, 2016. [7] J. Krause, T. Gebru, J. Deng, L.-J. Li, and L. Fei-Fei. Learning features and parts forfine-grainedrecognition. InPattern Recognition (ICPR), 2014 22nd International Conference on, pages 26–33. IEEE, 2014. [8] V. Lajish and S. K. Kopparapu. Mobile phone based vehicle license plate recognition for road policing. arXiv preprint arXiv:1504.01476, 2015. [9] J. Lezama, Q. Qiu, and G. Sapiro. Not afraid of the dark: Nir-vis face recognition via cross-spectral hallucination and low-rank embedding. arXiv preprint arXiv:1611.06638, 2016. [10] Y.-L. Lin, V. I. Morariu, W. Hsu, and L. S. Davis. Jointly optimizing 3d model fitting and fine-grained classification. In European Conference on Computer Vision, pages 466–480. Springer, 2014. [11] H. Liu, Y. Tian, Y. Yang, L. Pang, and T. Huang. Deep relative distance learning: Tell the difference between similar vehicles. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2167–2175, 2016. [12] J. Sochor, A. Herout, and J. Havel. Boxcars: 3d boxes as cnn input for improved fine-grainedvehiclerecognition. InProceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3006–3015, 2016. [13] Z. Wang, S. Chang, Y. Yang, D. Liu, and T. S. Huang. Studying very low resolution recognitionusingdeepnetworks. InProceedingsoftheIEEEConferenceonComputer Vision and Pattern Recognition, pages 4792–4800, 2016. [14] J. Wu, S. Ding, W. Xu, and H. Chao. Deep joint face hallucination and recognition. arXiv preprint arXiv:1611.08091, 2016. [15] L. Yang, P. Luo, C. Change Loy, and X. Tang. A large-scale car dataset for finegrained categorization and verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3973–3981, 2015.
|