|
1) Kikuchi .K. Design, synthesis and biological application of chemicalprobes for bioimaging. Chem .Soc. Rev.,2010,39,2048–53. 2) Azhdarinia .A, Ghosh .P, Ghosh .S, Wilganowski .N, Sevick-Muraca .E.M. Dual-labeling strategies for nuclear and fluorescence molecularimaging: a review and analysis. Mol Imaging Biol.,2012,14, 261–276. 3) De M, Ghosh .P.S., Rotello .V.M. Applications of nanoparticles in biol-ogy. Adv Mater 2008,20,4225–4241. 4) Hahn .M.A., Singh .A.K., Sharma .P, Brown .S.C., Moudgil .B.M. Nanoparticles as contrast agents for in-vivo bioimaging: current status andfuture perspectives. Anal. Bioanal. Chem.,2011,399,3–27. 5) Liu .J, Yang .X, He .X, Wang .K, Wang .Q, Guo .Q, Shi .H, Huang .J, Huo X.Fluorescent nanoparticles for chemical and biological sensing. SciChina Chem., 2011,54,1157–1176. 6) Ja´nczewski .D, Zhang .Y, Das .G.K., Yi .D.K., Padmanabhan .P, Bhakoo .K.K., Tan .T.T.Y., Selvan .S.T. Bimodal magnetic-fluorescent probes forbioimaging. Microsc. Res .Tech.,2011,74,563–576. 7) Wang. L, Zhu .X, Xie. C, Ding. N, Weng X, Lu W, Wei X, Li C. Imagingacidosis in tumors using a pH-activated near-infrared fluorescenceprobe. Chem Commun., 2012,48,11677–11679. 8) Li .K, Liu B. Polymer encapsulated conjugated polymer nanoparticlesfor fluorescence bioimaging. J .Mater. Chem., 2012,22,1257–1264. 9) Zeng .S, Tsang .M.K., Chan .C.F., Wong .K.L., Hao J. PEG modifiedBaGdF5: Yb/Er nanoprobes for multi-modal upconversion fluo-rescent, in vivo X-ray computed tomography and biomagneticimaging. Biomaterials., 2012,33,9232–9238. 10) Yang .T, Liu .Q, Pu .S, Dong .Z, Huang .C, Li F. Fluorophore-photochromeco-embedded polymer nanoparticles for photoswitchable fluores-cence bioimaging. Nano Res.,2012,5,494–503. 11) Kim .J.H., Park .K, Nam .H.Y, Lee .S, Kim .K, Kwon .I.C. Polymers forbioimaging. Prog Polym Sci., 2007,32,1031–1053. 12) Tian H, Tang Z, Zhuang X, Chen X, Jing X. Biodegradable syntheticpolymers: preparation, functionalization and biomedical applica-tion. Prog Polym Sci.,2012,37,237–280. 13) Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A. Carbon-based nanomaterials: multifunctional materials for biomedicalengineering. ACS Nano.,2013,7,2891–2897. 14) Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, CatsicasS, Schwaller B, Forró L. Cellular toxicity of carbon-based nanoma-terials. Nano Lett.,2006,6,1121–1125. 15) Ray S, Saha A, Jana NR, Sarkar R. Fluorescent carbon nanoparti-cles: synthesis, characterization, and bioimaging application. J. Phys.Chem. C .,2009,113,18546–18551. 16) Sahu S, Behera B, Maiti TK, Mohapatra S. Simple one-step synthesisof highly luminescent carbon dots from orange juice: applicationas excellent bioimaging agents. Chem Commun ., 2012,48,8835–8837. 17) Shen L, Zhang L, Chen M, Chen X, Wang J. The production ofpH-sensitive photoluminescent carbon nanoparticles by the car-bonization of polyethylenimine and their use for bioimaging.Carbon.,2013,5,343–349. 18) Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, WangH, Yang B. Highly photoluminescent carbon dots for multicolor pat-terning, sensors, and bioimaging. Angew .Chem .Int.Ed.,2013,25,4045–4049. 19) Shen J, Zhu Y, Yang X, Li C. Graphene quantum dots: emergent nano-lights for bioimaging, sensors, catalysis and photovoltaic devices.Chem.Commun.,2012,48,3686–3699. 20) Zhu .S, Zhang .J, Qiao .C, Tang .S, Li Y, Yuan W, Li B, Tian L, Liu F, HuR. Strongly green-photoluminescent graphene quantum dots forbioimaging applications. Chem. Commun., 2011,47,6858–6860. 21) Cao .L, Wang .X, Meziani .M.J., Lu .F, Wang .H, Luo .P.G., Lin .Y, Harruff .B.A.,Veca .L.M., Murray D. Carbon dots for multiphoton bioimaging. J .Am.Chem .Soc.,2007,129,11318–11319. 22) Yang .S.T, Wang .X, Wang .H, Lu .F, Luo .P.G., Cao .L, Meziani .M.J., Liu.J.H., Liu .Y, Chen M. Carbon dots as nontoxic and high-performancefluorescence imaging agents. J Phys Chem C .,2009,113,18110–18114. 23) Prasad, P. N. Introduction to Nanomedicine and Nanobioengineering; Wiley-Interscience: Hoboken, NJ, 2012. 24) Prasad, P. N. Introduction to Bio photonics; Wiley-Interscience: Hoboken, NJ, 2003. 25) Prasad, P. N. Nano photonics; Wiley-Interscience: Hoboken, NJ, 2004. 26) Perrault.S.D., Chan .W.C.W. Synthesis and Surface Modification of Highly Monodispersed, spherical Gold Nanoparticles of 50−200 nm. J. Am. Chem. Soc., 2009, 131 (47), 17042−17043. 27) Nikoobakh .B,. El-Sayed .M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater.,2003, 15 (10), 1957−1962. 28) Cui.W.Y, Park .Q.Q,Lieber .H.K. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science.,2001, 293 (5533), 1289−1292. 29) Coleman .J., Lotya .N, O’Neill .M, Bergin .A, King .S.D., Khan .P.J., Young .U., K. Gaucher.K, De .A, Smith.et.al. Two- Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science.,2011, 331 (6017), 568−571. 30) Hao.F,Nehl.C.L., Hafner.J.H., Nordlander.P. Plasmon resonances of a gold nanostar. Nano Lett.,2007, 7, 729−732. 31) Chen .J, Saeki .F, Wiley .B.J., Cang .H, Cobb .M.J., Li .Z.Y., Au .L, Zhang .H, Kimmey .M.B., Li .X.D., Xia .Y.N. Gold nanocages: Bio-conjugation and their potential use as optical imaging contrast agents. Nano Lett.,2005, 5 (3), 473−477. 32) Ozin. G.A. Nanochemistry - Synthesis in Diminishing Dimensions. Adv. Mater.,1992, 4, 612−649. 33) Burda .C, Chen .X. B., Narayanan .R, El-Sayed .M.A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev.,2005, 105 (4), 1025−1102. 34) Guanying .C, Indrajit .R, Chunhui .Y, Prasad P.N.Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev., 2016, 116, 2826- 2885. 35) Vasilios .G, Jason A.P, Jiri .T, Zboril .R. Broad family of Carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev., 2015, 112, 4744-4822. 36) Walker .P.L. Jr. Carbon- An old but new material. Carbon, 1972, 10,369-382. 37) Heimann .R.B., Evsyukov .S.E. and Kocac .Y. Carbon allotropes: a suggested classification scheme based on valence orbital hybridization. Letter to Editor, 1997, 1654-1658. 38) Wang .Y, Wang .X.C, Antonieti. M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed., 2012, 51, 68-89. 39) Kroto .H.W, Heath .J.R., O’Brien .S.C., Curl .R.F., Smalley.R.E.C60: Buckminsterfullerene. Nature.,1985, 318, 162-163. 40) Kratschmer .W, Lamb .L. D, Fostiropoulos .K, Huffman. D. R. Solid C60: a new form of carbon. Nature.,1990, 347, 354-358. 41) Iijima .S,Ichihashi.T. Single-shell carbon nanotubes of 1-nm diameter.Nature.,1993, 363, 603-605. 42) Bethune .D. S, Klang .C. H, De Vries .M. S,Gorman .G, Savoy.R, Vasquez .J, Beyers. R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993, 363, 605-607.
43) Novoselov.K.S, Geim.A.K,Morozov.S.V, Jiang.D, Zhang.Y,Dubonos .S.V,Grigorieva .I.V,Firsov .A.A. Electric field effect in atomically thin carbon films. Science.,2004, 306,666-669. 44) Lieber C.M., Chen .C.C. Preparation of Fullerenes and Fullerene–based materials. Solid State Phys.,1994, 48, 109-148.
45) Parker .D.H., Wurz.P, Chatterjee .K, Lykke .K.R., Hunt .J.E., Pellin .M.J., Hemminger.J.C., Gruen.D.M., Stock.L.M. High yield synthesis, separation and mass spectrometric characterization of fullerene C60- C260.J.Am.Chem.Soc.,1991,113, 7499-7503.
46) Pech .D, Brunet .M, Durou .H, Huang .P,Mochalin .V,Gogotsi .Y, Taberna .P.L.,Simon .P. Nat. Nanotechnol. 2010, 5, 651-654. 47) Rettenbacher .A.S., Elliott .B, Hudson .J.S, Amirkhanian .A, Echegoyen .L. Preparation and Functionalization of Multilayer Fullerenes (Carbon Nano-Onions).Chem.Eur. J.,2006, 12, 376-387. 48) Butenko.Y.V., Krishnamurthy.S, Chakraborty.A.K, Kuznetsov .V. L., Dhanak .V. R., Hunt .M. R. C., Šiller.L. Photoemission study of onion-like carbons produced by annealing nanodiamonds. Phys. Rev. B., 2005, 71, 075420. 49) Banhart .F,Ajayan .P.M. Self- compression and diamond formation in carbon onions. Adv. Mater.,1997, 9, 261-263. 50) Ugarte .D. Curling and closure of graphitic networks under electron beam irradiation. Nature.,1992, 359, 707-709. 51) Jiang .J, He .Y, Li .S, Cui .H. Amino acids as the source for producing carbon nanodots: microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement. Chem. Commun., 2012, 48, 9634-9636. 52) Ming .H, Ma .Z, Liu .Y, Pan. K, Yu. H, Wang .F, Kang .Z. Large scale electrochemical synthesis of high quality carbon nanodots and their photo catalytic property. Dalton Trans., 2012, 41, 9526-9531. 53) Ponomarenko .L.A., Schedin .F, Katsnelson M.I., Yang .R, Hill .E.W, Novoselov .K.S., Geim .A.K. Chaotic Dirac billiard in Graphene Quantum dots. Science., 2008, 320, 356-358.
54) Yan .X, Cui .X, Li .B, Li .L. Large, Solution-ProcessableGraphene Quantum Dots as Light Absorbers for Photovoltaics. Nano Lett., 2010, 10, 1869-1873. 55) Neubeck .S, Ponomarenko .L.A., Freitag .F, Giesbers .A.J.M., Zeitler.U.,Morozov .S.V., Blake .P, Geim .A.K., Novoselov .K.S. From One Electron to One Hole: Quasi-particle Counting in Graphene Quantum Dots Determined by Electrochemical and Plasma Etching. Small., 2010, 6, 1469-.1473. 56) Li .L.S., Yan .X. Colloidal Graphene Quantum dots. J.Phys. Chem. Lett., 2010, 1, 2572-2576. 57) Ritter .K.A., Lyding .J.W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater.,2009, 8, 235-242. 58) Lu .J, Yeo .P.S.E., Gan .C.K., Wu .P, Loh.K.P. Transforming C60 molecules into graphene quantum dots. Nat. Nanotechnol.,2011, 6, 247-252. 59) Peng .J, Gao .W, Gupta .B.K., Liu .Z, Romero-Aburto.R, Ge.L.H., Song .L,Alemany.L. B., Zhan.X.B.,Gao.G. H.,Vithayathil.S.A., Kaipparettu .B.A., Marti .A.A., Hayashi .T, Zhu .J.J., Ajayan.P.M. Graphene Quantum Dots Derived from Carbon Fibers. Nano Lett., 2012, 12, 844-849. 60) Xie .M, Su .Y, Lu .X, Zhang .Y, Yang .Z, Zang .Y. Blue and green photoluminescence graphene quantum dots synthesized from carbon fibers.Mater. Lett., 2013, 93, 161-164. 61) Li .Y, Hu .Y, Zhao .Y, Shi .G.Q., Deng .L.E., Hou .Y.B., Qu .L.T. An Electrochemical Avenue to Green-Luminescent Graphene Quantum Dots as Potential Electron-Acceptors for PhotovoltaicsAdv. Mater., 2011, 23, 776-780. 62) Guo .C. X., Yang H. B., Sheng .Z.M., Lu .Z.S., Song .Q.L., Li .C.M. Layered graphene/ Quantum dots for Photovoltaic devices. Angew. Chem., Int. Ed.,2010, 49, 3014-3017. 63) Zhu .S.J., Zhang .J.H., Qiao .C.Y., Tang .S.J., Li .Y.F., Yuan .W. J., Li .B, Tian, L, Liu .F, Hu .R,Gao .H.N., Wei .H.T.,Zhang .H, Sun .H.C.,Yang .B.Strongly green-photoluminescentgraphene quantum dots for bioimaging applications. Chem. Commun., 2011, 47, 6858-6860. 64) Zhang .M, Bai .L.L., Shang .W.H., Xie .W.J., Ma .H, Fu .Y.Y., Fang .D.C., Sun .H, Fan .L. Z., Han .M, Liu .C.M, Yang .S.H. Facile synthesis water-soluble highly fluorescent graphene quantum dots as robust biological label for stem cells. J. Mater. Chem., 2012, 22, 7461-7467. 65) Konstantatos .G, Badioli .M, Gaudreau .L, Osmond .J, Bernechea .M, De Arquer .F.P.G., Gatti .F, Koppens .F.H.L. Hybrid graphene quantum-dots phototransistors with ultrahigh gain. Nat. Nanotechnol.,2012, 7, 363-368. 66) Zhuo .S.J., Shao .M.W., Lee .S.T. Upconversion and Down conversion fluorescent Graphene quantum dots: ultrasonic preparation and photocatalysis. ACS Nano., 2012, 6, 1059-1064. 67) Williams .O.A. Nanocrystalline diamond.Diamond Relat. Mater., 2011, 20, 621-640. 68) Niwase .K, Tanaka .T, Kakimoto .Y, Ishihara .K.N, Shingu .P.H. Raman spectra of diamond and graphite mechanically milled with agate or steel ball mill. Mater. Trans., JIM 1995, 36, 282. 69) Boudou .J.P., Curmi .P.A., Jelezko .F, Wrachtrup .J, Aubert .P, Sennour .M, Balasubramanian .G, Reuter .R, Thorel .A, Gaffet .E. High yield fabrication of fluorescent nanodiamonds. Nanotechnology., 2009, 20, doi: 10.1088/0957-4484/20/23/235602. 70) Dahl .J.E., Liu .S.G., Carlson .R.M.K. Isolation and structure of higher diamondoids, nano-meter sized diamonds molecules. Science. 2003, 299, 96-99. 71) Mochalin .V, Osswald .S, Gogotsi .Y. Contribution of Functional Groups to the Raman Spectrum of Nanodiamond Powders.Chem. Mater., 2009, 21, 273-279. 72) Hu .S, Tian, .F, Bai .P, Cao .S, Sun .J, Yang .J. Synthesis and luminescence of nanodiamonds from carbon black Mater. Sci. Eng., B: Adv. Funct. Solid-State Mater., 2009, 157, 11-14. 73) Kim .Y.A., Muramatsu .H, Hayashi .T, Endo .M, Terrones .M, Dresselhaus .M.S. Fabrication of High-Purity, Double-Walled Carbon Nanotube Buckypaper. Chem. Vap. Deposition., 2006, 12, 327-330. 74) Pfeiffer .R, Pichler .T, Kim .Y.A., Kuzmany .H, Jorio, .A, Dresselhaus .G, Dresselhaus .M. S., Eds.; Carbon Nanotube: Advanced Topics in synthesis , structure and properties. Applied Physics, Vol. 111; Springer-Verlag: Berlin, Heidelberg, Germany, 2008; p 495. 75) Dai .H. Carbon Nanotubes: Synthesis, Integration, and Properties. Acc. Chem. Res., 2002, 35, 1035-1044. 76) Bahr .J.L., Mickelson .E.T., Bronikowski .M.J., Smalley .R.E., Tour .J.M. Dissolution of small diameter of single wall carbon nanotube in organic solvents?. Chem. Commun., 2001, 193-194. 77) Agnihotri .S, Mota .J.P.B., Abadi .M. R., Rood .M.J. Structural Characterization of Single-Walled Carbon Nanotube Bundles by Experiment and Molecular Simulation.Langmuir., 2005, 21, 896-904. 78) Wang .F, Lang .L, Li .B, Liu .W, Li .X,Xu.Z. A novel non-catalytic approach for fabrication of bamboo-like carbon nanotubes.Mater. Lett.,2010, 64, 86-88. 79) Costa .S, Palen .E.B., Kruszynska .M, Bachmatiuk .A, Kalenczuk .R.J. Mater. Characterization of carbon nanotubes by Raman spectroscopy .Sci.-Pol., 2008, 26, 433-441. 80) Melechko .A.V., Merkulov .V. I., McKnight .T.E., Guillorn .M.A., Klein .K.L., Lowndes, D.H., Simpson .M.L.J. Vertically aligned carbon nanofibers and related structures: Contr olled synthesis and directed assembly. Appl. Phys., 2005, 97, 041301- 041339. 81) Inagaki .M, Yang .Y, Kang .F.Y.Carbon NanofibersPrepared via electro-spinning.Adv. Mater., 2012, 24, 2547-2566. 82) Ramos .A, Camean.I,Garcia.A.B. Graphitization thermal treatment of carbon nanofibers. Carbon., 2013, 59, 2-32. 83) Serp .P, Corrias .M, Kalck .P. Carbon nanotubes and nanofibers in catalysis.Appl. Catal. A.,2003, 253, 337-358. 84) Iijima.S, Yudasaka.M, Yamada .R,Bandow.S,Suenaga.K,Kokai.F, Takahashi .K. Nano-aggregates of single-walled graphitic carbon nano-horns. Chem. Phys. Lett.,1999, 309, 165-170. 85) Nikolaos .K, Martinez.I.S., Christopher .P.E, Tagmatarchis .N. Structure, properties, functionalization, and applications of carbon nanohorns. Chem.Rev.,2016,116, 4850-4883. 86) Hashim .D.P., Narayanan .N.T., Romo-Herrera .J.M., Cullen .D.A., Hahm.M.G., Lezzi, .P, Suttle.J.R., Kelkhoff .D., Munoz-Sandoval.E., Ganguli .S et al. Covalently Bonded Three-Dimensional Carbon Nanotube Solids via Boron Induced Nanojunctions. Sci. Rep.,2012, 2, 363. 87) Berber .S, Kwon .Y.K., Tomanek .D. Electronic and structural properties of carbon nanohorns. Phys. Rev. B.,2000, 62, R2291- R2294. 88) Chopra .N.G., Benedict .L.X., Crespi .V.H., Cohen .M.L., Louie.S.G., Zettl.A. Fully Collapsed Carbon Nanotubes. Nature., 1995, 377, 135−138. 89) Yudasaka, M.; Iijima, S.; Crespi, V. H. In Carbon Nanotubes; Jorio, A., Dresselhaus, G., Dresselhaus, M. S., Eds. Topics in Applied Physics, Vol. 111; Springer-Verlag: Berlin, Heidelberg, Germany, 2008, p 605. 90) Yudasaka, M.; Iijima, S.; Crespi, V. H. In Carbon Nanotubes; Jorio, A., Dresselhaus, G., Dresselhaus, M. S., Eds.; Topics in Applied Physics, Vol. 111, Springer-Verlag: Berlin, Heidelberg, Germany, 2008, pp 605− 629. 91) Bandow .S, Rao .A.M., Sumanasekera .G.U., Eklund .P.C., Kokai .F., Takahashi .K, Yudasaka .M, Iijima .S. Evidence for Anomalously Small Charge Transfer in Doped Single-Wall Carbon Nanohorn Aggregates with Li, K and Br. Appl. Phys. A: Mater. Sci. Process., 2000, 71, 561−564. 92) Ambrosi .A, Pumera .M. Nanographite Impurities Dominate Electrochemistry of Carbon Nanotubes. Chem. - Eur. J., 2010, 16, 10946−10949. 93) Verdejo .R, Lamoriniere .S, Cottam .B, Bismarck .A, Shaffer .M. Removal of Oxidation Debris from Multi-Walled Carbon Nanotubes. Chem. Commun. (Cambridge, U. K.),2007, 513−515. 94) Fogden .S, Verdejo .R, Cottam .B, Shaffer .M. Purification of Single Walled Carbon Nanotubes: The Problem with Oxidation Debris. Chem. Phys. Lett., 2008, 460, 162−167. 95) Bellunato .A, ArjmandiTash .H, Cesa .Y, Schneider .G.F. Chemistry at the Edge of Graphene. Chem. Phys.Chem., 2016, 17, 785− 801. 96) Wong C.H.A.,Sofer.Z,Kubešová.M,Kučera.J,Matějková.S,Pumera.M. Synthetic Routes Contaminate Graphene Materials with a Whole Spectrum of Unanticipated Metallic Elements. Proc. Natl. Acad. Sci. U. S. A.,2014, 111, 13774−13779. 97) Kasuya .D, Yudasaka .M, Takahashi .K, Kokai .F, Iijima .S. Selective Production of Single-Wall Carbon Nanohorn Aggregates and Their Formation Mechanism. J. Phys. Chem. B.,2002, 106, 4947−4951. 98) Pagona .G, Mountrichas.G, Rotas.G, Karousis.N, Pispas.S, Tagmatarchis.N. Properties, Applications and Functionalisation of Carbon Nanohorns. Int. J. Nanotechnol., 2009, 6, 176−195. 99) Zhu .S, Xu .G. Single-walled Carbon Nanohorns and their Applications. Nanoscale.,2010, 2, 2538−2549. 100) Hernandez .Y, Nicolosi .V, Lotya .M, Blighe .F.M., Sun .Z.Y., De .S, McGovern .I.T., Holland .B, Byrne .M.,Gun’ko .Y.K., Boland .J.J., Niraj .P., Duesberg .G, Krishnamurthy .S, Goodhue .R, Hutchison .J, Scardaci .V, Ferrari .A.C., Coleman .J.N. High yield production of graphene by liquid phase exfoliation of graphite.Nat. Nanotechnol., 2008, 3, 563-568. 101) Meyer .J.C., Kisielowski .C, Erni .R, Rossell .M.D., Crommine .M.F., Zettl.A. Direct Imaging of Lattice Atoms and Topological Defects in Graphene Membranes Nano Lett., 2008, 8, 3582-3856. 102) Nakada .K, Fujita .M, Dresselhaus .G, Dresselhaus .M.S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B.,1996, 54, 17954−17961. 103) Geim, A. K. Graphene: Status and Prospects. Science.,2009, 324, 1530−1534. 104) Bolotin .K.I., Sikes .K.J, Jiang .Z, Klima .M, Fudenberg .G, Hone .J, Kim .P, Stormer .H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun.,2008, 146, 351−355. 105) Du .X, Skachko .I, Barker .A, Andrei .E.Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol.,2008, 3, 491−495. 106) Pop .E, Varshney .V, Roy .A.K. Thermal properties of graphene: Fundamentals and applications. MRS Bull. 2012, 37, 1273− 1281. 107) Liang Yan, Yue Bing Zheng, Feng Zhao, Shoujian Li, XingfaGao, BingqianXu, Paul S. Weiss, Yuliang Zhao. Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chem.Soc.Rev.,2012,41, 97-114. 108) Liu .S, Zeng .T.H., Hofmann .M, Burcombe .E, Wei .J, Jiang .R, Kong .J, Chen .Y. Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. ACS Nano., 2011, 5, 6971-6980. 109) Brodie .B.C., Philos. On the Atomic Weight of Graphite. Trans. R. Soc. London., 1859, 149, 249-259. 110) Zhang .L, Liang .J, Huang .Y, Ma .Y, Wang .Y, Chen .Y. Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation.Carbon, 2009, 47, 3365–3368. 111) Dreyer .D.R, Sungjin Park .S, Bielawski C.W., Ruoff. R.S. The Chemistry of Graphene Oxide. Chem.Sov.Rev., 2010, 39, 228-240. 112) Dreyer .D.R., Bielawski C.W. Carbocatalysis: Heterogeneous carbons finding utility in synthetic Chemistry. Chem. Sci., 2011, 2, 1233-1240. 113) Dreyer .D.R., Jia H.P., Bielawski.C.W. Graphene Oxide: A convenient carbon catalyst for facilitating oxidation and hydration reactions. Angew.Chem.Int.Ed.,2010, 49, 6813-6816. 114) Chul .C, Kim .Y.K., Shin .D, Ryoo .S.R., Hong .B.H., Min .D.H. Biomedical applications of graphene and graphene Oxide. Acc. Of. Chem.Research., 2013, 46, 2211-2224. 115) Bourlinos .A.B., Steriotis .T.A., Zboril .R, Georgakilas .V, Stubos .A. Direct synthesis of carbon nanosheets by the solid-state pyrolysis of betaine. J. Mater. Sci., 2009, 44, 1407-1411. 116) Terrones .M, Botello-Mendez .A.R., Campos-Delgado .J, Lopez-Urias .F, Vega-Cantu .Y.I., Rodriguez-Macias .F.J., Elias .A.L., Munoz-Sandoval .E, Cano-Marquez .A.G., Charlier .J.C., Terrones .H. Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications Nano Today., 2010, 5, 351-372. 117) Chen .L, Hernandez.Y, Feng .X.L., Mullen .K. From Nanographene and Graphene Nanoribbons to Graphene Sheets: Chemical Synthesis. Angew. Chem.,Int. Ed., 2012, 51, 7640. 118) James, D. K., Tour, J. M. Graphene: Powder, Flakes, Ribbons, and Sheets.Acc. Chem. Res., 2013, 46, 2307-2318. 119) James, D. K.; Tour, J. M. The Chemical Synthesis of Graphene Nanoribbons- A Tutorial Review. Macromol. Chem. Phys., 2012, 213, 1033-1055. 120) Hare .J.P., Kroto .H.W., Taylor .R. Preparation and ‘UV/visible spectra of fullerenes C60, and C70Chem.Phys. Lett.,1991, 177, 394-398. 121) Scrivens .W.A., Tour .J.M. Synthesis of gram quantities of C60 by plasma discharge in a modified round-bottomed flask. Key parameters for yield optimization and purification. J.Org. Chem., 1992, 57, 6932-6936. 122) Kroto.H.W. Space, Stars, C60 and Soot. Science.,1988, 242, 1139. 123) Taylor .R, Langley .G.J., Kroto .H.W., Walton .D.R.M. Formation of C60 by pyrolysis of naphthalene. Nature., 1993, 366, 728-731. 124) Howard .J.B., McKinnon .J.T., Makarovsky .Y, Lafleur .A.L., Johnson .M.E. Fullerenes C60 and C70 in flames. Nature., 1991, 352, 139-141. 125) Homann .K. H. Fullerenes and Soot Formation New Pathways to Large Particles in Flames. Angew. Chem., Int. Ed., 1998, 37, 2434-2451. 126) Murayama .H, Tomonoh .S, Alford .J.M., Karpuk .M.E. Fullerenes, Nanotubes, Carbon Nanostruct., 2004, 12, 1. 127) Anctil .A, Babbitt C. W., Raffaelle .R. P., Landi .B. J. Material and Energy Intensity of Fullerene Production. Environ. Sci. Technol., 2011, 45, 2353-2359. 128) Mojica .M, Alonso .J.A., Méndez .F. Synthesis of Fullerenes. J. Phys. Org. Chem., 2013, 26, 526-535. 129) Viñes .F, Görling A. Template-Assisted Formation of Fullerenes from Short-Chain Hydrocarbons by Supported Platinum Nanoparticles. Angew. Chem., Int. Ed.,2011, 123, 4707-4714. 130) De Hee .W.A., Ugarte .D. Formation mechanism of quasi-spherical carbon particles induced by electron bombardment. Chem. Phys. Lett., 1993, 207, 480-486. 131) Sano .N, Wang .H, Chhowalla .M, Alexandrou .I, Amaratunga .G.A. Nanotechnology: Synthesis of carbon 'onions' in water. Nature., 2001, 414, 506-507. 132) Sano .N, Wang .H, Alexandrou .I, Chhowalla .M, Teo .K.B.K., Amaratunga .G.A.J., Iimura .K. Properties of carbon onions produced by an arc discharge in water. J. Appl. Phys., 2002, 92, 2783-2788. 133) Alexandrou .I, Wang .H, Sano .N, Amaratunga .G.A.J. Structure of carbon onions and nanotubes formed by arc in liquids. J. Chem. Phys., 2004, 120, 1055-1058. 134) Cabioc’h .T, Girard .J.C., Jaouen .M, Denanot .M.F., Hug .G. Carbon onions thin film formation and characterization. Europhys. Lett., 1997, 38, 471-476. 135) Cabioc’h .T, Jaouen .M, Denanot .M.F., Bechet .P. Influence of the implantation parameters on the microstructure of carbon onions produced by carbon ion implantation. Appl. Phys. Lett., 1998, 73, 3096,doi: http://dx.doi.org/10.1063/1.122684. 136) Xu .X.Y., Ray .R, Gu .Y.L., Ploehn .H.J., Gearheart .L, Raker .K, Scrivens .W.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc., 2004, 126, 12736-12737. 137) Li .H, Kang .Z, Liu .Y, Lee .S.T. Carbon nanodots: synthesis, properties and applications. J. Mater. Chem., 2012, 22, 24230-24253. 138) Sun .Y.P., Zhou .B, Lin .Y, Wang .W, Fernando .K.A.S., Pathak .P, Meziani .M.J., Harruff .B.A., Wang .X, Wang .H.F, Luo .P.G.,Yang .H, Kose .M.E., Chen .B.L., Veca .L. M., Xie .S.Y. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc., 2006, 128, 7756-7757. 139) Zheng .L.Y., Chi. Y.W., Dong .Y.Q., Lin .J. P., Wang. B. B. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J. Am. Chem. Soc., 2009, 131, 4564-4565. 140) Zhao .Q.L., Zhang .Z.L., Huang .B.H., Peng. J., Zhang .M, Pang .D.W. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem. Commun., 2008, 5116-5118. 141) Zhou .J.G., Booker .C, Li .R.Y., Zhou .X.T.; Sham .T.K., Sun .X. L., Ding .Z. F. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J. Am. Chem. Soc., 2007, 129, 744-745. 142) Bacon .M, Bradley .S.J, Nann .T. Graphene Quantum Dots. Part. Part. Syst. Charact., 2014, 31, 415-428. 143) Li .L.L., Ji .J, Fei .R, Wang .C.Z., Lu .Q, Zhang .J.R., Jiang .L.P., Zhu .J.J. A Facile Microwave Avenue to Electrochemiluminescent Two-Color Graphene Quantum Dots. Adv. Funct. Mater., 2012, 22, 2971-2979. 144) Shinde .D. B., Pillai .V. K. Electrochemical Preparation of Luminescent Graphene Quantum Dots from Multiwalled Carbon Nanotubes. Chem.Eur. J., 2012, 18, 12522-12528. 145) Dongv .Y, Pangv .H, Renv .S, Chen .C, Chiv .Y, Yuv .T. Etching single-wall carbon nanotubes into green and yellow single-layer graphene quantum dots. Carbon., 2013, 64, 245-261. 146) Ananthanarayanan .A, Wang .X, Routh .P, Sana .B, Lim .S, Kim .D.H., Lim .K.H., Li. J, Chen. P.Synthesis of Graphene Quantum Dots from 3D Graphene and their Application for Fe3+ Sensing. Adv. Funct. Mater., 2014, 24, 3021-3026. 147) Liu .R, Wu .D, Feng .X, Mullen K. Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J. Am. Chem. Soc., 2011, 133, 15221-15223. 148) Shenderova .O.A., Grue .D.M., Eds. Ultrananocrystalline Diamond: Synthesis, Properties, and Applications; William Andrew Inc.: Norwich, NY, 2006. 149) Krueger .A. Diamond Nanoparticles: Jewels for Chemistry and Physics. Adv. Mater., 2008, 20, 2445-2449. 150) Prasek .J, Drbohlavova .J, Chomoucka .J, Hubalek .J, Jasek .O, Adam .V, Kizek .R. Methods for carbon nanotubes synthesis—review. J. Mater. Chem., 2011, 21, 15872-15884. 151) Journet .C, Maser .W.K., Bernier .P, Loiseau .A, delaChapelle .M.L., Lefrant .S, Deniard .P, Lee .R, Fischer .J. E. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature., 1997, 388, 756-758. 152) Azami .T, Kasuya .D, Yuge .R, Yudasaka .M, Iijima .S, Yoshitake .T, Kubo .Y. Large-Scale Production of Single-Wall Carbon Nanohorns with High Purity. J. Phys. Chem. C., 2008, 112, 1330-1334. 153) Gattia .D.M., Vittori .A.M., Marazzi .R. AC arc discharge synthesis of single-walled nanohorns and highly convoluted graphene sheets. Nanotechnology., 2007, 18, 255604. 154) Khan .U, O’Neill, A .Lotya .M, De .S, Coleman .J. N. High-Concentration Solvent Exfoliation of Graphene. Small., 2010, 6, 864-871. 155) Bourlinos .A.B., Georgakilas .V, Zboril .R, Steriotis .T.A., Stubos .A.K. Liquid-phase exfoliation of graphite towards solubilized graphenes. Small., 2009, 5, 1841-1845. 156) Georgakilas .V, Kouloumpis .A, Gournis .D, Bourlinos .A, Trapalis .C, Zboril .R. Tuning the Dispersibility of Carbon Nanostructures from Organophilic to Hydrophilic: Towards the Preparation of New Multipurpose Carbon-Based Hybrids. Chem.Eur. J., 2013, 19, 12884-12891. 157) Hamilton .C.E., Lomeda .J.R., Sun .Z.Z., Tour .J.M., Barron .A.R. High-yield organic dispersions of unfunctionalized graphene. Nano Lett., 2009, 9, 3460-3462. 158) De .S, King .P.J., Lotya .M, O’Neill .A., Doherty .E.M., Hernandez .Y, Duesberg .G.S., Coleman .J.N. Flexible, Transparent, Conducting Films of Randomly Stacked Graphene from Surfactant-Stabilized, Oxide-Free Graphene Dispersions. Small., 2010, 6, 458-464. 159) Herron .C.R., Coleman .K.S., Edwards .R.S., Mendis .B.G. Simple and scalable route for the ‘bottom-up’ synthesis of few-layergraphene platelets and thin films. J. Mater.Chem., 2011, 21, 3378-3383. 160) Liu .M, Yan .Y, Zhang .L, Wang .X, Wang .C. Hydrothermal preparation of carbon nanosheets and their supercapcitive behavior. J. Mater. Chem., 2012, 22, 11458-11461. 161) Kuang .Q, Xie .S.Y., Jiang .Z.Y., Zhang .X.H., Xie .Z.X., Huang .R.B., Zheng .L.S. Low temperature solvothermal synthesis of crumpled carbon nanosheets. Carbon., 2004, 42, 1737-141. 162) Kosynkin .D.V., Higginbotham .A.L., Sinitskii .A., Lomeda .J.R., Dimiev .A., Price .B. K., Tour .J.M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature., 2009, 458, 872-876. 163) Jiao .L, Wang .X, Diankov .G, Wang .H, Dai .H. Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol., 2010, 5, 321-325. 164) Kim .K, Sussman .A, Zettl .A. Graphene Nanoribbons Obtained by Electrically Unwrapping Carbon Nanotubes. ACS Nano., 2010, 4, 1362-1366. 165) Han .M.Y., Oezyilmaz .B, Zhang .Y, Kim .P. Energy band gap engineering of Graphene Nanoribbons. Phys. Rev. Lett., 2007, 98,DOI: 10.1103/PhysRevLett.98.206805 . 166) Yang .X, Dou. X, Rouhanipour .A, Zhi .L, Rader .H.J., Mullen .K. Two dimenisional graphene nanoribbons. J. Am. Chem. Soc.,2008, 130, 4216-4217. 167) Campos-Delgado .J, Romo-Herrera .J.M., Jia .X.T., Cullen .D.A., Muramatsu .H, Kim .Y.A., Hayashi .T, Ren .Z.F., Smith .D.J., Okuno .Y, Ohba .T, Kanoh .H, Kaneko .K, Endo .M, Terrones .H, Dresselhaus .M S., Terrones .M. Crystalline graphene nanoribbons. Nano Lett.,2008, 8, 2773-27778. 168) Guosong .H, Shuo .D, Alexander L.A, Hongjie D. Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy .Chem.Rev.,2015, 115,10816-10906. 169) Wu .H.C., Chang .X.L., Liu .L, Zhao .F, Zhao Y.L. Chemistry of carbon nanotubes in biomedical applications. J. Mater. Chem., 2010, 20, 1036–1052. 170) Liu .J, Rinzler .A.G., Dai .H.D, Hafner .J.H, Bradley .R.K., Boul P.J., Lu .A, Iverson .T, Shelimov .K, Huffman C.B., Rodriguez-Macias .F, Shon .Y.S, Lee .T.R., Colbert .D.T. and Smalley .R.E. Fullerene Pipes. Science.,1998, 280, 1253–1256. 171) Hirsch .A, Brettreich .M. Fullerenes: Chemistry and Reactions; John Wiley & Sons: Hoboken, NJ, 2006. 172) Maggini .M, Scorrano .G, Prato .M. Addition of AzomethineYlides to C-60 Synthesis, Characterization, and Functionalization of FullerenePyrrolidines. J. Am. Chem. Soc., 1993, 115, 9798−9799. 173) Bingel .C. Cyclopropanierung von fullerenen. Chem. Ber., 1993, 126, 1957−1959. 174) Chiang .L.Y., Bhonsle .J.B., Wang .L.Y., Shu .S.F., Chang .T.M.,. Hwu .J.R. Efficient one-flask synthesis of water-soluble [60]- fullerenols. Tetrahedron.,1996, 52, 4963−4972. 175) Kam .N.W.S., Jessop .T. C., Wender .P.A., Dai .H.J. Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc., 2004, 126, 6850− 6851. 176) Cognet .L, Tsyboulski .D.A., Rocha .J.D.R., Doyle .C.D., Tour .J.M., Weisman .R.B. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science., 2007, 316,1465−1468. 177) Kaur .P, Shin .M.S., Sharma .N, Kaur .N, Joshi .A, Chae .S.R., Park .J.S., Kang .M.S., Sekhon .S.S. Non-Covalent Functionalization of Graphene with Poly(diallyldimethylammonium) Chloride: Effect of a Non-Ionic Surfactant. Int. J. Hydrogen Energy., 2015, 40, 1541−1547. 178) Geim .A.K., Novoselov .A. K. The rise of graphene. Nat. Mater., 2007, 6, 183-191. 179) Wang .S, Tang .L.A.L., Bao .Q.L., Lin .M, Deng .S.Z., Goh .B.M., Loh .K.P. Room-Temperature Synthesis of Soluble Carbon Nanotubes by the Sonication of Graphene Oxide Nanosheets. J. Am. Chem. Soc., 2009, 131, 16832-16837. 180) Xu .Z.W., Chen .L, Zhou .B.M., Li .Y.L., Li .B.D., Niu .J.R., Shan .M.J., Guo .Q.W., Wang .Z, Qian .X.M.Nano-structure and property transformation of carbon systems under ray irradiation: a review. RSC Adv., 2013, 3, 10579-10597. 181) Smalley .R.E. Self-assembly of the fullerenes. Acc. Chem. Res., 1992, 25, 98-105. 182) Heath .J. R. Synthesis of C60 from Small Carbon Clusters. ACS Symp. Ser., 1991, 481, 1 , pg 1-23, DOI: 10.1021/bk-1992-0481.ch001. 183) Hunter .J M., Fye .J. F., Roskamp .E. J., Jarrold .M.F. Annealing carbon cluster ions—a mechanism for fullerene synthesis. J. Phys. Chem., 1992, 98, 1810-1818. 184) Huang .J.Y., Ding .F, Jiao .K, Yakobson .B.I. Real Time Microscopy, Kinetics, and Mechanism of Giant Fullerene Evaporation. Phys. Rev. Lett., 2007, 99, DOI: 10.1103/PhysRevLett.99.175003. 185) Kim .W.S., Moon .S.Y., Bang .S.Y., Choi .B.G., Ham .H, Sekino .T, Shim .K.B. Fabrication of graphene layers from multiwalled carbon nanotubes using high dc pulse. Appl. Phys. Lett., 2009, 95, DOI: 10.1063/1.3213350. 186) Yusa .H. Nanocrystalline diamond directly transformed from carbon nanotubes under high pressure. DiamondRelat. Mater., 2002, 11, 87-91. 187) Chernogorova .O, Potapova .I, Drozdova .E, Sirotinkin .V, Soldatov .A.V.,Vasiliev .A, Ekimov .E. Structure and physical properties of nanoclusteredgraphene synthesized from C60 fullerene under high pressure and high temperature.Appl. Phys. Lett., 2014, 104, doi: 10.1063/1.4863470. 188) Nasibulin .A.G., Pikhitsa .P.V., Jiang .H, Brown .D.P., Krasheninnikov .A.V.; Anisimov .A.S., Queipo .P, Moisala .A, Gonzalez .D, Lientschnig .G, Hassanien .A, Shandakov .S.D., Lolli .G, Resasco .D.E., Choi .M, Tomanek .D, Kauppinen .E.I. A novel hybrid carbon material. Nat. Nanotechnol., 2007, 2, 156-161. 189) Chowdhury .I, Duch .M.C., Mansukhani .N.D., Hersam .M.C., Bouchard .D. Colloidal Properties and Stability of Graphene Oxide Nanomaterials in the Aquatic Environment. Environ. Sci. Technol., 2013, 47, 6288−6296. 190) Achari .A, Datta .K.K.R., De .M, Dravid .V.P., Eswaramoorthy M. Amphiphilic Aminoclay-RGO Hybrids: ASimple Strategy to Disperse a High Concentration of RGO in Water. Nanoscale., 2013, 5, 5316−5320. 191) Reber .C., Yee .L., Mckiernan .J, Zink .J.I., Williams .R.S., Tong .W, Ohlberg .D.A. A., Whetten.R.L., Diederich .F. Luminescence and Absorption-Spectra of C60 Films. J. Phys. Chem., 1991, 95, 2127−2129. 192) Guclu .A.D., Potasz .P, Hawrylak .P. Excitonic absorption in gate-controlled graphene quantum dots. Phys. Rev. B., 2010, 82, 155445. 193) Yu .S.J., Kang .M.W., Chang .H.C., Chen .K.M., Yu .Y.C. Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity. J. Am. Chem. Soc., 2005, 127, 17604−17605. 194) Aharonovich .I,Greentree .A.D., Prawer S. Diamond photonics. Nat. Photonics., 2011, 5, 397−405. 195) Hui.Y.Y., Su .L.J., Chen .O.Y., Chen .Y.T., Liu .T.M., Chang .H.C. Wide-field imaging and flow cytometric analysis of cancer cells in blood by fluorescent nanodiamond labeling and time gating. Sci. Rep., 2014, 4, 5574. 196) Ray .S.C., Saha .A, Jana .N. R., Sarkar .R. Fluorescent Carbon Nanoparticles: Synthesis, Characterization, and Bioimaging Application. J. Phys. Chem. C., 2009, 113, 18546−18551. 197) Cushing .S.K., Li .M., Huang.F. Q., Wu .N.Q. Origin of Strong Excitation Wavelength Dependent Fluorescence of Graphene Oxide. ACS Nano.,2014, 8, 1002−1013. 198) Devika .C.B, Arezou .A.G, Warren .C.W.C. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett., 2006, 6(4),662–668. 199) Julie .A.C, Samir M. Role of target geometry in phagocytosis. Proc Natl Acad Sci USA.,2006,103(13), 4930–4934. 200) Stephanie .E.A.G, Patricia .A.R., Patrick .D.P., Christopher. J.L., Victoria .J.M., Mary .EN., et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA., 2008,105(33),11613–11618. 201) Tsai .H.C., Chang .C.H., Chiu .Y.C., Lin .S.Y., Lin .C.P., Hsiue .G.H. In vitro evaluation of hexagonal polymeric micelles in macrophage phagocytosis. Macromol Rapid Commun., 2011,32(18),1442–1446. 202) Decuzzi .P.G., Tanaka .B, Lee .T, Chiappini .S.Y., Liu .C.X., Ferrari .M. Size and shape effects in the biodistribution of intravascularly injected particles. J Controlled Release., 2010,141(3),320–327. 203) Mu .Q, Broughton .D.L., Yan .B. Endosomal leakage and nuclear translocation of multiwalled carbon nanotubes: developing a model for cell uptake. Nano Lett., 2009,9(12),4370–4375. 204) Tsai .H.C., Lin .J.Y., Maryani .F, Huang .C.C., Imae T. Drug loading capacity and nuclear targeting of multi-walled carbon nanotubes grafted with anionic amphiphilic copolymers. Int J. Nanomed., 2013,8(1),4427–40. 205) Vaisman .L, Wagner .H.D., Marom .G. The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci., 2006,128–130,37–46. 206) Qiana .H.S., Han .F.M., Zhang .B, Yan .C.G., Jun .Y, Peng .B.X. Noncatalytic CVD preparation of carbon spheres with a specific size. Carbon., 2004,42(4),761–766. 207) Ji .B.J., Kimb .P, Wooyoung .K, Jongsik .K, Kima .N.D. Simple preparation of hollow carbon sphere via templating method. Curr Appl Phys., 2008,8(6),814–817. 208) Friedel .B, Siegmund .G.W. Preparation of monodisperse submicrometer carbon spheres by pyrolysis of melamineformaldehyde resin. Small., 2006,2(7),859–63. 209) Niki .B, Guillaume .L, Florence .B, Franck .F, Titirici .M.M., Markus .A. Structural characterization of hydrothermal carbon spheres by advanced solid-state, MAS 13C NMR investigation. J .Phys .Chem .C., 2009,113(22),9644–9654. 210) Hu .B, Wang .K, Wu .L, Yu .S.H, Markus .A, Tritrici .M.M. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater., 2010,22(7),813–828. 211) Sun .X, Li .Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem Int Ed., 2004,43(5),597–601. 212) Marta .S, Lota .G, Antonio .B.F. Saccharide-based graphitic carbon nanocoils as supports for PtRu nanoparticles for methanol electro oxidation. J Power Source., 2007,171(2), 546. 213) Yongsoon .S, Wang .L.Q., Bae .I.T., Bruce .W.A, Gregory .J.E. Hydrothermal syntheses of colloidal carbon spheres from cyclodextrins. J .Phys. Chem .C., 2008,112(37),14236–40. 214) Yao .C, Yongsoon .S, Wang .L.Q, Charles .Jr. F.W., William .D.S., Bruce .W.A, et al. Hydrothermal dehydration of aqueous fructose solution in a closed system. J .Phys .Chem. C., 2007,111(42),15141–15145. 215) Wei .L, Zhang .Z, Kong. B, Feng .S,Wang .J, Wang .L, et al. Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging. Angew Chem Int Ed ., 2013,52(31),8151–8155. 216) Yang. Y, Jianghu .C, Zheng .M, Hu .C, Shaozao .T, Yong .X, et al. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem Commun., 2012,48(3),380–382. 217) Yang .Z.C, Zhang .Y, Kong .J.H, Wong .S.Y., Li .X, Wang .J. Hollow carbon nanoparticles of tunable size and wall thickness by hydrothermal treatment of a-cyclodextrin template by F127 block copolymers. Chem Mater., 2013,25(5),704–710. 218) Tao .L, Gao .L, Liu .J, Chen. L, Shen .J, Wang. L, et al. Olivary particles: unique carbon microstructure synthesized by catalytic pyrolysis of acetone. J. Phys. Chem. B., 2005,109(32),15272–15277. 219) Zhan .Y.J., Yu .S.H. Direct synthesis of carbon-rich composite sub-microtubes by combination of a solvothermal route and a succeeding self-assembly process. J Phys Chem C., 2008,112(11),4024–4028. 220) Kenneth .A.M., Moore .R.B. State of understanding of Nafion. Chem.Rev., 2004,104(10),4535–4585. 221) Yanqia .W, Yoshio .K, Steven .R.A., Richard .A.P. TGA and timedependent FTIR study of dehydrating Nafion-Na membrane. Macromolecules., 2003,36(4),1138–1146. 222) Niki .B, Guillaume. L, Florence. B, Franck .F, Titirici .M.M., Markus .A. Structural characterization of hydrothermal carbon spheres by advanced solid-state MAS 13C nmr investigations. J .Phys .Chem. C., 2009,113(22),9644–9654. 223) Liang. Z, Chen.W, Liu. J,Wang .S, Zhou .Z, Li.W, et al. FT-IR study of the microstructure of Nafion_ membrane. J .Membr. Sci., 2004,233(1–2),39–44. 224) Kweon .D.K, Lim .S.T. Preparation and characteristics of a water-soluble chitosan–heparin complex. J .Appl .Polym .Sci., 2003,87(11),1784–1789. 225) Chai .Z, Wang .C, Hongjie. Z, Doherty .C.M., Bradley .P.L., Anita .J.H., et. al. Nafion–carbon nanocomposite membranes prepared using hydrothermal carbonization for protonexchange- membrane fuel cells. Adv. Func .Mater., 2010,20(24),4394–4399. 226) Liu. H, Ye .T, Mao .C. Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed., 2007,46(34),6473–6475. 227) Benjamin .J.W., Chen .Y, Jospeh .M.M., Xiong .Y, Li. Z.Y., Ginger. D, et al. Synthesis and optical properties of Silver Nanobars and Nanorice. Nano Lett.,2007,7(4),1032–1036. 228) Ludvigsson .M, Lindgren .J, Tegenfeldt .J. Crystallinity in cast Nafion_. J Electrochem Soc 2000,147(4),1303–1305. 229) Lee .S.H, Mathews .M, Toghiani .H, David .O.W., Charles .Jr .U.P. Fabrication of carbon-encapsulated mono- and bimetallic (Sn and Sn/Sb alloy) nanorods. Potential lithium-ion battery anode materials. Chem. Mater., 2009,21(11),2306–2314. 230) Rangasamy .J, Nitar .N, Hideaki .N, Tetsuya .F, Hiroshi T. Synthesis, characterization and biospecific degradation behavior of sulfated chitin. Macromol Symp., 2008,264(1),163–167. 231) Ke .J-H, Kumar. A.S., Sue .J.W., Venkatesan .S, Zen. J.M. Catalysis and characterization of a rugged lead ruthenate pyrochlore membrane catalyst. J Mol Catal A: Chem., 2005, 233(1– 2),111–120. 232) Ramaiyan .K, Bhalchandra .A.K., Vijayamohanan .K.P. Polymer electrolyte fuel cells using Nafion-based composite membranes with functionalized carbon nanotubes. Angew Chem Int Ed., 2008,47(14), 2653–2656. 233) Shiori .K, Irene .T, White .R.J., Markus .A, Titirici .M.M. Template synthesis of carbonaceous tubular nanostructures with tunable surface properties. Chem. Mater., 2010,22(24),6590–6597. 234) Jung .J.H., Jeon .J.H., Sridhar .V, Oh .I.K. Electroactive graphene– Nafion actuators. Carbon., 2011,49(4),1279–89. 235) Eufrozina .A.H., Zoltan .A.F., Ljiljana .S.K.K., Frank .E.K., Eugene W. Theoretical and experimental X-ray photoelectron spectroscopy investigation of ion-implanted Nafion. J .Polym. Sci. Polym. Chem., 2004,42(3),551–556. 236) Kuznetsova .A, Popova .I, John .Jr .T.Y., Bronikowski .M.J., Chad .B.H., Jie .L, et al. Oxygen-containing functional groups on singlewall carbon nanotubes: NEXAFS and vibrational spectroscopic studies. J .Am .Chem .Soc., 2001,123(43),10699–10704. 237) Wang .Y.Q., Peter .M.A.S. Studies of carbon nanotubes and fluorinated nanotubes by X-ray and ultraviolet photoelectron spectroscopy. Chem .Mater., 2004;16(25):5427–5436. 238) Kay .H.A., Jeong .G.H., Jeon .K.G., Dong .J.B., Chulsu .J, Cheol.W, et al. X-ray photoemission spectroscopy study of fluorinated single-walled carbon nanotubes. Appl. Phys. Lett., 2002,80(22),4235–4237. 239) Zhu .C, Zhai .J, Dong .S. Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chem Commun., 2012, 48(75),9367–9369. 240) Wei .X.L. XPS study of highly sulfonated polyaniline. Macromolecules., 1999, 32(9), 3114–3117. 241) Liang .Z, Weimin. C, Jianguo .L, Wang .S, Zhou .Z, Wenzhen .L, et al. FT-IR study of the microstructure of Nafion membrane. J .Membr. Sci.,2004,233(1–2),39–44. 242) Kennith .A, Jandik, Dale .K, Michelle .C, Robert .J.L. Accelerated stability studies of Heparin. J. Pharam .Sci .,1996,85(1),45–51. 243) Sachdev .A, Ishita .M, Uday Kumar .S, Bharat .B, Poornima .D, Gopinath .P. A novel one-step synthesis of PEG passivated multicolour fluorescent carbon dots for potential biolabeling application. RSC .Adv., 2013,3(38),16958–16961. 244) Xin.W, Li .C, Yang .S.T, Fushen .L, Mohammed .J.M., Leilei.T et. al. Band gap-like strong fluorescence in functionalized carbon nanoparticles. Angew Chem Int Ed.,2010,49(31),5310–5314. 245) Jia .X, Li .J, Erkang W. One-pot green synthesis of optically pHsensitive carbon dots with upconversion luminescence. Nanoscale .,2012,4(18),5572–5575. 246) Sun .Y.P, Zhou .B, Yi .L, Wang .W. Fernando KAS, Pathak .P et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J.Am.Chem.Soc., 2006,128(24),7756–7757. 247) Vasilios.G, Jason .A.P. , Jiri .T, Radek.Z , Board family of carbon nano allotropies: classification chemistry and application of fullerenes, carbondots, nanotubes, graphene, nanodiamonds and combined superstructures, Chem. Rev.,2015, 115(11), 4744-4822. 248) Chechetka .S.A., Zhang .M, Yudassaka .M, Miyako .E, Physicochemically functionalized carbon nanohorns for multi-dimensional cancer elimination, Carbon., 2016, 97, 45-53. 249) Karousis .N,Martinez .I.S., Ewels .C.P., Tagmatarchis.N. Strucutre, properties, functionalization and application of carbon nanohorns, Chem. Rev., 2016, 116(8), 4850-4883. 250) Iijima .S, Yudasaka .M, Yamada .R, Bandow .S, Suenaga .K, Kokai .F, Takahashi .K. Nano-aggregates of single- walled graphitic cabon nao-horns, Chem .Phys. Lett.,1999,309 (3-4), 165-170. 251) Yamaguchi .T, Bandow .S, Iijima .S. Synthesis of carbon nanohorn particle by simple pulsed ignited between pre heated carbon rods arc discharge. Chem. Phys. Lett.,2004, 389(1-3), 181-185. 252) Li .N, Wang .Z, Zho .K, Shi .Z, Gu .Z, Xu .S, Synthesis of single- wall carbon nanohorns by arc- discharge in air and their formation mechanism, Carbon.,2010, 48(5), 1580-1585. 253) Schiavon .M, Device and method for production of carbon nanotube, fullerene and their derivatives, U.S. Patent 7,125,525 EP 1428794 (Filed 2003, granted 2006). 254) Zhang .J, Zou .H, Qing .Q, Ying .Y, Li .Q, Liu .Z, Guo .X, Du .Z. Effect of chemical oxidation on the structure of carbon nanotubes, J .Phys .Chem. B., 2003, 107(16), 3712-3718. 255) Lin .Y, Meziani .M.J., Sun .Y.P., Functionalized carbon naotubes for polymeric nanocomposites, J. Mater. Chem.,2007,17, 1143-1148. 256) Aryee .E, Dalai .A, Adjaye .J Functionalization and characterisation of carbon nanohorns (CNHs) for Hydro treating of gas oils, Top .Catal., 2014, 57, 796-805. 257) Bekyarova .E, Kaneko .K, Yudasaka .M, Kasuya .D, Iijima .S, Huidobro .A Controlled opening of single –wall carbon nanohorns by heat treatment in Carbon dioxide, J. Phys. Chem .B., 2003,107(19),4479-4484. 258) Bekyarova .E, Kaneko .K, Yudasaka .M , Kasuya .D , Iijima .S Oxidation and porosity evaluation of budlike single-wall carbon nanohon Aggregates, Langmuir., 2002,18(10) , 4138-4141. 259) Huang .W, Zhang .J.F, Dorn .H.C., Geohegan .D, Zhang .C Assembly of single-wall carbon nanohorn supported liposome particles, Bioconjugate .Chem., 2011, 22(6), 1012−1016. 260) Yang .S.T., Cao .L, Luo .P.G., Lu .F, Wang .X, Wang .H, Meziani .M.J., Liu Y.F., Qi .G, Sun .Y.P. Carbon Dots for optical imaging in vivo, J. Am .Chem .Soc., 2009, 131(32) , 11308-11309. 261) Hsiao .W.W.W., Hui .Y.Y., Tsai .P.C., Chang .H.C, Fluoresecent nanodiomanod; A versatile tool for long–term cell tracking, super-resolution imaging, and nanoscale temperature sensing, Acc. Chem. Res ., 2016,49, 400- 407. 262) Wen .J, Xu .Y, Li .H, Lu .A,Sun .S Recent Application of Carbon nanomaterials in fluorescence biosensing and bioimaging, Chem. Commun.,2015,51,11346-11358. 263) Parasuraman .P.S., Tsai .H.C., Iame .T. In-situ hydrothermal Synthesis of carbon nanorice using Nafion as a template, Carbon.,2014,77, 660-666. 264) Cheol .M.Y., Daisuke .K, Masako .Y, Sumio .I, Katsumi .K Microporosity development of single wall carbon nanohorn with chemically induced coalescence of assembly Structure, J. Phys. Chem. B., 2004, 108, 17775-17778. 265) Zhang .X, Merenad .E.L., Castleman .A.W., Reaction of water cluster with nitric acid, J. Phys. Chem., 1994, 98,3554-3557. 266) Minfang .Z, Masako .Y, Kumiko .A, Jin .M, Sumio .I Light sssisted oxidation of single wall carbon nanohors for abundant creation of oxygen groups that enable chemical modification with proteins to enhance biocompatibility, ACS NANO., 2007, 1, 265-272. 267) Liang .Z, Chen .W, Liu .J,Wang .S, Zhou .Z, Li .W, FT-IR study of Nafion Membrane,J. Membr. Sci.,2004 ,233 (1-2) 39-44. 268) Kweon .D.K., Lim S.T. Preparation and characterization of a water- soluble chitosan-heparin complex, J. Appl. Polym. Sci., 2003, 87(11), 1784-1789. 269) Ray .S.C., Arindam .S, Jana .N.R., Rupa .S Fluorescent carbon nanoparticles: synthesis, characterisation,and bioimaging application, J. Phys. Chem. C., 2009, 11(3), 18546-18551. 270) Hwang .J.J., Yong .J.K., Jong .H.H., Masaka .H, Iijimo .S, Hirofumi .K, Yoong .A.K., Katsumi .K, Cheol .M.Y. Thermal-treatment-induced enhancement in effective surface area of single wall carbon nanohorns for supercapcitor application,J. Phys. Chem. C., 2013, 117, 25877-25883. 271) Shigenroi .U, Hiroaki .H, Yoshiyuki .H, Hirofumi .K, Kunimitsu .T, Hideki .S, Masahiko .A, Masako .Y,Sumio .I, Katusmi .K. Direct evidence on C-C single bonding in single wall carbon nanohorn aggregates, J. Phys. Chem. C., 2007,111,5572-5575. 272) Wang .Y.Q., Peter .M. Studies of carbon nanotube and fluorinated nanotube by X-ray and ultra-violet photoelectron spectroscopy, Chem. Mater.,2004, 16(25), 5427-5436. 273) Maxim .N.T., Warren .T.F., Giulio .L, Daniel E.R., Sivaram .A. Effect of mild nitric acid oxidation on dispersability, size, and structure of single wall carbon nanotube, Chem. Mater., 2007, 19, 5765-5772. 274) Jin .Z, Hongling .Z, Quan .Q, Yanlian .Y, Zhongfa .L,Xinyong .G, Zuliang .D. Effect of chemical oxidation on the structure of single wall carbn nanotube, J.Phys.Chem.B.,2003, 107,3712-3718. 275) Sasaki K.I., Sekine .Y, Tateno .K , Gotoh .H, Topological raman band in the carbon nanohorn, Phys.Rev. lett ., 2013, 111, 116801-116805. 276) Sachdev .A, Ishita .M, Uday Kumar .S, Bharat .B, Poornima .D, Gopinath .P. A novel one- step synthesis of PEG passivated multicolour fluorescent carbon dots for potential bio labeling application, RSC. Adv.,2013, 3(38), 16958-16961. 277) Shu .J.Y., Ming .W, Huan .C.C., Kuan .M.C., Yueh .C.Y. Brigh Fluorescent nanodiamonds: No photo bleaching and low cytotoxicity, J .Am. Chem. Soc., 2005, 127 17604-17605. 278) Neugar.F, Zappe .A, Jelezko .F, Tietz .C, Boudou .J.P., Krueger .A, Wrachtrup .J. Dynamics of diamond nanoparticles in solution and cells, Nano. Lett., 2007, 7(12), 3588-3591.
|