跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/11 01:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:巴書能
研究生(外文):Perumalswamy Sekar Parasuraman
論文名稱:以水熱法製備用於生物成像的螢光奈米碳材料之合成與描述
論文名稱(外文):SYNTHESIS AND CHARACTERISATION OF FLUORESCENCE CARBON NANOMATERIALS AS BIO-IMAGING BY HYDROTHERMAL METHOD.
指導教授:蔡協致
指導教授(外文):Hsieh-Chih Tsai
口試委員:楊禎明鄭如忠何清華氏原真樹蔡協致
口試委員(外文):Jen-Ming YangRu-Jong JengChing-Hwa HoMasaki UjiharaHsieh-Chih Tsai
口試日期:2017-04-18
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:應用科技研究所
學門:自然科學學門
學類:其他自然科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:143
中文關鍵詞:Hydrothermal methodHeparinNafionNCNRDahliaFluorescenceBio-imagingMDCK cells
外文關鍵詞:Hydrothermal methodHeparinNafionNCNRDahliaFluorescenceBio-imagingMDCK cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來學者們著重於利用無金屬觸媒催化劑且簡單化學合成法製備具環境安全性且低毒性之碳材料,雖然目前已有很多碳材料之合成法如雷射消融法、電弧放電及電化學法,但多無法製備上述條件之碳材料。目前天然且低毒性碳材料可藉由一些多醣體經由水熱法之碳化後製備而成,也因此本研究希望開發以新多醣體並依水熱法製備奈米碳粒子之方法。第一部份為奈米碳米粒之製備,利用全氟磺酸樹脂(Nafion)為模板及催化劑,並以肝素分子(heparin)為碳材料之原料,由於全氟磺酸樹脂具備親水及疏水鏈段在不同水及甲醇環境中會有自我聚集特性,形成不同水腔體內含肝素分子,進一步利用水熱法碳化肝素分子,而碳化後奈米粒子經電子顯微鏡觀察其形狀為米力結構,我們也同時分析此奈米碳米粒組成包含了5-羥甲基糠醛,此證明肝素分子可以利用全氟磺酸樹脂來碳化,且此碳化奈米粒子具備螢光可以用來做為奈米粒子細胞顯影劑。第二部分為了增強奈米碳米粒之螢光強度,進一步將碳米粒於硝酸中反應,此反應完後,我們發現原始碳米粒消失轉而形成奈米碳鬚結構,此奈米碳鬚結構可能來自於硝基化反應破壞了米粒結構讓部分疏水不分外露,此化學氧化反應可能在碳結構上形成梭酸基及其他氧化官能基,碳米粒中疏水部分再重新聚集形成碳鬚結構,同時此硝基化反應可能造成更多結構缺陷及氧原子參雜,也因此我們發現此奈米碳鬚具備更強的螢光特性,且同時碳鬚結構可以提供更多表面積可以用攜帶藥物或其他物質達到輸送及顯影之雙重用途。
In the past year, researchers have focused on developing simple chemical route for synthesis carbon nanomaterials which should eco-friendly, less cytotoxicity and bio-degradable. However, the broad carbon family members are developed in order to meet above mentioned criteria. A majority of techniques implemented for synthesis were hydrothermal method, arc-discharge method, laser ablation method, microwave irradiation, chemical exfoliation method, sol-gel process, pyrolysis, sonication, strong oxidizing agent, electrochemical method. Among them, hydrothermal method (HTM) was the most abundant natural resources: monosaccharide’s such as sugar, xylose, maltose, glucose, milk, charcoal, graphite rods, fruit juices, etc. which were used for fabricate of carbon nanomaterials.This dissertation is organized based on two independent sections: first section Carbon nanorice has been prepared by the hydrothermal carbonization of heparin in a Nafion solution at a mild temperature of approximately 100 ˚C. Through transmission electronmicroscopy, the individual grains of this nanorice were found to have a diameter in therange of 100 nm and a length of approximately 500 nm. The mechanism of formation for this nano-scale rice-like structure is suggested to be a self-assembling process; whereincharring of the heparin causes desulfation followed by carbonization, ultimately forming5-hydroxylmethyl furfural in the presence of a Nafion membrane. This is confirmedthrough Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy,with this method also shown to produce a much greater number of carbon structures thanother synthesis methods. Moreover, this new method results in carbon nanorice that exhibits fluorescence, which is of great interest for potential biomedical or optoelectronicapplications.The second section, we report a new interconversion chemical route for synthesis Dahlia- like hydrophilic Fluorescence carbon Nanohorns(HFCNHs) from NCNR via chemical oxidation process.Dahlia-like” hydrophilic fluorescent carbon nanohorn (HFCNH) was synthesized by simple conventional method. HFCNH was prepared from chemical oxidation of Nafion encapsulated Carbon Nanorice (NCNR). The proposed mechanism for the formation of HFCNH undergoes two major pathways. Initially, structural breakdown of NCNR occurred along the curvatures during the chemical oxidation process while the later involves the heterogeneous micelle porous domain at NCNR outer layer serving as a template for the self-assembly of HFCNH. As a consequence, Dahlia–Like morphology were formed due to the aggregation of HFCNHs with diameter 50-200nm. The chemical and elemental analysis of HFCNH were characterised by Fourier transform infrared spectroscopy and X-ray photoelectron analysis. “Dahlia–Like” HFCNH emittedfluorescence (450nm)have enhanced effect over NCNR due to presence of structural defects and carbogenic content from NCNR. These findings demonstrate that HFCNH have high fluorescent property which enables them as potential tool for bio-imaging in in vitro studies. Therefore, we have synthesis fluorescence of carbon nanomaterials as bio-imaging probe via Hydrothermal method..
Table 1. The concentration of Nafion and Heaprin on charring for NCNR .
Sample Code Nafion mM Heparin mM Total volume ml Charring @100°C HTM after 90 Minutes Dispersion
A 0 0.22 3ml no Yes
B 0.083 0.083 3ml Charring yes
C 0.16 0.083 3ml Charring yes
D 0.25 0.083 3ml Charring partial
E 0.33 0.083 3ml Charring insoluble
F 0.416 0.183 3ml Charring insoluble
G 0.5 0 3ml no insoluble
H 0.083 0.092 3ml Charring((35 minutes) yes
I 0.083 0.18 3ml Charring( 90 minutes) Yes
J 0.083 0.36 3ml Charring(120 minutes) Yes
K 0.083 0.92 3ml Charring(360 minutes) Yes
L 0.083 1.83 3ml Charring(720 minutes) Yes
1) Kikuchi .K. Design, synthesis and biological application of chemicalprobes for bioimaging. Chem .Soc. Rev.,2010,39,2048–53.
2) Azhdarinia .A, Ghosh .P, Ghosh .S, Wilganowski .N, Sevick-Muraca .E.M. Dual-labeling strategies for nuclear and fluorescence molecularimaging: a review and analysis. Mol Imaging Biol.,2012,14, 261–276.
3) De M, Ghosh .P.S., Rotello .V.M. Applications of nanoparticles in biol-ogy. Adv Mater 2008,20,4225–4241.
4) Hahn .M.A., Singh .A.K., Sharma .P, Brown .S.C., Moudgil .B.M. Nanoparticles as contrast agents for in-vivo bioimaging: current status andfuture perspectives. Anal. Bioanal. Chem.,2011,399,3–27.
5) Liu .J, Yang .X, He .X, Wang .K, Wang .Q, Guo .Q, Shi .H, Huang .J, Huo X.Fluorescent nanoparticles for chemical and biological sensing. SciChina Chem., 2011,54,1157–1176.
6) Ja´nczewski .D, Zhang .Y, Das .G.K., Yi .D.K., Padmanabhan .P, Bhakoo .K.K., Tan .T.T.Y., Selvan .S.T. Bimodal magnetic-fluorescent probes forbioimaging. Microsc. Res .Tech.,2011,74,563–576.
7) Wang. L, Zhu .X, Xie. C, Ding. N, Weng X, Lu W, Wei X, Li C. Imagingacidosis in tumors using a pH-activated near-infrared fluorescenceprobe. Chem Commun., 2012,48,11677–11679.
8) Li .K, Liu B. Polymer encapsulated conjugated polymer nanoparticlesfor fluorescence bioimaging. J .Mater. Chem., 2012,22,1257–1264.
9) Zeng .S, Tsang .M.K., Chan .C.F., Wong .K.L., Hao J. PEG modifiedBaGdF5: Yb/Er nanoprobes for multi-modal upconversion fluo-rescent, in vivo X-ray computed tomography and biomagneticimaging. Biomaterials., 2012,33,9232–9238.
10) Yang .T, Liu .Q, Pu .S, Dong .Z, Huang .C, Li F. Fluorophore-photochromeco-embedded polymer nanoparticles for photoswitchable fluores-cence bioimaging. Nano Res.,2012,5,494–503.
11) Kim .J.H., Park .K, Nam .H.Y, Lee .S, Kim .K, Kwon .I.C. Polymers forbioimaging. Prog Polym Sci., 2007,32,1031–1053.
12) Tian H, Tang Z, Zhuang X, Chen X, Jing X. Biodegradable syntheticpolymers: preparation, functionalization and biomedical applica-tion. Prog Polym Sci.,2012,37,237–280.
13) Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A. Carbon-based nanomaterials: multifunctional materials for biomedicalengineering. ACS Nano.,2013,7,2891–2897.
14) Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, CatsicasS, Schwaller B, Forró L. Cellular toxicity of carbon-based nanoma-terials. Nano Lett.,2006,6,1121–1125.
15) Ray S, Saha A, Jana NR, Sarkar R. Fluorescent carbon nanoparti-cles: synthesis, characterization, and bioimaging application. J. Phys.Chem. C .,2009,113,18546–18551.
16) Sahu S, Behera B, Maiti TK, Mohapatra S. Simple one-step synthesisof highly luminescent carbon dots from orange juice: applicationas excellent bioimaging agents. Chem Commun ., 2012,48,8835–8837.
17) Shen L, Zhang L, Chen M, Chen X, Wang J. The production ofpH-sensitive photoluminescent carbon nanoparticles by the car-bonization of polyethylenimine and their use for bioimaging.Carbon.,2013,5,343–349.
18) Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, WangH, Yang B. Highly photoluminescent carbon dots for multicolor pat-terning, sensors, and bioimaging. Angew .Chem .Int.Ed.,2013,25,4045–4049.
19) Shen J, Zhu Y, Yang X, Li C. Graphene quantum dots: emergent nano-lights for bioimaging, sensors, catalysis and photovoltaic devices.Chem.Commun.,2012,48,3686–3699.
20) Zhu .S, Zhang .J, Qiao .C, Tang .S, Li Y, Yuan W, Li B, Tian L, Liu F, HuR. Strongly green-photoluminescent graphene quantum dots forbioimaging applications. Chem. Commun., 2011,47,6858–6860.
21) Cao .L, Wang .X, Meziani .M.J., Lu .F, Wang .H, Luo .P.G., Lin .Y, Harruff .B.A.,Veca .L.M., Murray D. Carbon dots for multiphoton bioimaging. J .Am.Chem .Soc.,2007,129,11318–11319.
22) Yang .S.T, Wang .X, Wang .H, Lu .F, Luo .P.G., Cao .L, Meziani .M.J., Liu.J.H., Liu .Y, Chen M. Carbon dots as nontoxic and high-performancefluorescence imaging agents. J Phys Chem C .,2009,113,18110–18114.
23) Prasad, P. N. Introduction to Nanomedicine and Nanobioengineering; Wiley-Interscience: Hoboken, NJ, 2012.
24) Prasad, P. N. Introduction to Bio photonics; Wiley-Interscience: Hoboken, NJ, 2003.
25) Prasad, P. N. Nano photonics; Wiley-Interscience: Hoboken, NJ, 2004.
26) Perrault.S.D., Chan .W.C.W. Synthesis and Surface Modification of Highly Monodispersed, spherical Gold Nanoparticles of 50−200 nm. J. Am. Chem. Soc., 2009, 131 (47), 17042−17043.
27) Nikoobakh .B,. El-Sayed .M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater.,2003, 15 (10), 1957−1962.
28) Cui.W.Y, Park .Q.Q,Lieber .H.K. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science.,2001, 293 (5533), 1289−1292.
29) Coleman .J., Lotya .N, O’Neill .M, Bergin .A, King .S.D., Khan .P.J., Young .U., K. Gaucher.K, De .A, Smith.et.al. Two- Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science.,2011, 331 (6017), 568−571.
30) Hao.F,Nehl.C.L., Hafner.J.H., Nordlander.P. Plasmon resonances of a gold nanostar. Nano Lett.,2007, 7, 729−732.
31) Chen .J, Saeki .F, Wiley .B.J., Cang .H, Cobb .M.J., Li .Z.Y., Au .L, Zhang .H, Kimmey .M.B., Li .X.D., Xia .Y.N. Gold nanocages: Bio-conjugation and their potential use as optical imaging contrast agents. Nano Lett.,2005, 5 (3), 473−477.
32) Ozin. G.A. Nanochemistry - Synthesis in Diminishing Dimensions. Adv. Mater.,1992, 4, 612−649.
33) Burda .C, Chen .X. B., Narayanan .R, El-Sayed .M.A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev.,2005, 105 (4), 1025−1102.
34) Guanying .C, Indrajit .R, Chunhui .Y, Prasad P.N.Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev., 2016, 116, 2826- 2885.
35) Vasilios .G, Jason A.P, Jiri .T, Zboril .R. Broad family of Carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev., 2015, 112, 4744-4822.
36) Walker .P.L. Jr. Carbon- An old but new material. Carbon, 1972, 10,369-382.
37) Heimann .R.B., Evsyukov .S.E. and Kocac .Y. Carbon allotropes: a suggested classification scheme based on valence orbital hybridization. Letter to Editor, 1997, 1654-1658.
38) Wang .Y, Wang .X.C, Antonieti. M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed., 2012, 51, 68-89.
39) Kroto .H.W, Heath .J.R., O’Brien .S.C., Curl .R.F., Smalley.R.E.C60: Buckminsterfullerene. Nature.,1985, 318, 162-163.
40) Kratschmer .W, Lamb .L. D, Fostiropoulos .K, Huffman. D. R. Solid C60: a new form of carbon. Nature.,1990, 347, 354-358.
41) Iijima .S,Ichihashi.T. Single-shell carbon nanotubes of 1-nm diameter.Nature.,1993, 363, 603-605.
42) Bethune .D. S, Klang .C. H, De Vries .M. S,Gorman .G, Savoy.R, Vasquez .J, Beyers. R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993, 363, 605-607.

43) Novoselov.K.S, Geim.A.K,Morozov.S.V, Jiang.D, Zhang.Y,Dubonos .S.V,Grigorieva .I.V,Firsov .A.A. Electric field effect in atomically thin carbon films. Science.,2004, 306,666-669.
44) Lieber C.M., Chen .C.C. Preparation of Fullerenes and Fullerene–based materials. Solid State Phys.,1994, 48, 109-148.

45) Parker .D.H., Wurz.P, Chatterjee .K, Lykke .K.R., Hunt .J.E., Pellin .M.J., Hemminger.J.C., Gruen.D.M., Stock.L.M. High yield synthesis, separation and mass spectrometric characterization of fullerene C60- C260.J.Am.Chem.Soc.,1991,113, 7499-7503.

46) Pech .D, Brunet .M, Durou .H, Huang .P,Mochalin .V,Gogotsi .Y, Taberna .P.L.,Simon .P. Nat. Nanotechnol. 2010, 5, 651-654.
47) Rettenbacher .A.S., Elliott .B, Hudson .J.S, Amirkhanian .A, Echegoyen .L. Preparation and Functionalization of Multilayer Fullerenes (Carbon Nano-Onions).Chem.Eur. J.,2006, 12, 376-387.
48) Butenko.Y.V., Krishnamurthy.S, Chakraborty.A.K, Kuznetsov .V. L., Dhanak .V. R., Hunt .M. R. C., Šiller.L. Photoemission study of onion-like carbons produced by annealing nanodiamonds. Phys. Rev. B., 2005, 71, 075420.
49) Banhart .F,Ajayan .P.M. Self- compression and diamond formation in carbon onions. Adv. Mater.,1997, 9, 261-263.
50) Ugarte .D. Curling and closure of graphitic networks under electron beam irradiation. Nature.,1992, 359, 707-709.
51) Jiang .J, He .Y, Li .S, Cui .H. Amino acids as the source for producing carbon nanodots: microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement. Chem. Commun., 2012, 48, 9634-9636.
52) Ming .H, Ma .Z, Liu .Y, Pan. K, Yu. H, Wang .F, Kang .Z. Large scale electrochemical synthesis of high quality carbon nanodots and their photo catalytic property. Dalton Trans., 2012, 41, 9526-9531.
53) Ponomarenko .L.A., Schedin .F, Katsnelson M.I., Yang .R, Hill .E.W, Novoselov .K.S., Geim .A.K. Chaotic Dirac billiard in Graphene Quantum dots. Science., 2008, 320, 356-358.

54) Yan .X, Cui .X, Li .B, Li .L. Large, Solution-ProcessableGraphene Quantum Dots as Light Absorbers for Photovoltaics. Nano Lett., 2010, 10, 1869-1873.
55) Neubeck .S, Ponomarenko .L.A., Freitag .F, Giesbers .A.J.M., Zeitler.U.,Morozov .S.V., Blake .P, Geim .A.K., Novoselov .K.S. From One Electron to One Hole: Quasi-particle Counting in Graphene Quantum Dots Determined by Electrochemical and Plasma Etching. Small., 2010, 6, 1469-.1473.
56) Li .L.S., Yan .X. Colloidal Graphene Quantum dots. J.Phys. Chem. Lett., 2010, 1, 2572-2576.
57) Ritter .K.A., Lyding .J.W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater.,2009, 8, 235-242.
58) Lu .J, Yeo .P.S.E., Gan .C.K., Wu .P, Loh.K.P. Transforming C60 molecules into graphene quantum dots. Nat. Nanotechnol.,2011, 6, 247-252.
59) Peng .J, Gao .W, Gupta .B.K., Liu .Z, Romero-Aburto.R, Ge.L.H., Song .L,Alemany.L. B., Zhan.X.B.,Gao.G. H.,Vithayathil.S.A., Kaipparettu .B.A., Marti .A.A., Hayashi .T, Zhu .J.J., Ajayan.P.M. Graphene Quantum Dots Derived from Carbon Fibers. Nano Lett., 2012, 12, 844-849.
60) Xie .M, Su .Y, Lu .X, Zhang .Y, Yang .Z, Zang .Y. Blue and green photoluminescence graphene quantum dots synthesized from carbon fibers.Mater. Lett., 2013, 93, 161-164.
61) Li .Y, Hu .Y, Zhao .Y, Shi .G.Q., Deng .L.E., Hou .Y.B., Qu .L.T. An Electrochemical Avenue to Green-Luminescent Graphene Quantum Dots as Potential Electron-Acceptors for PhotovoltaicsAdv. Mater., 2011, 23, 776-780.
62) Guo .C. X., Yang H. B., Sheng .Z.M., Lu .Z.S., Song .Q.L., Li .C.M. Layered graphene/ Quantum dots for Photovoltaic devices. Angew. Chem., Int. Ed.,2010, 49, 3014-3017.
63) Zhu .S.J., Zhang .J.H., Qiao .C.Y., Tang .S.J., Li .Y.F., Yuan .W. J., Li .B, Tian, L, Liu .F, Hu .R,Gao .H.N., Wei .H.T.,Zhang .H, Sun .H.C.,Yang .B.Strongly green-photoluminescentgraphene quantum dots for bioimaging applications. Chem. Commun., 2011, 47, 6858-6860.
64) Zhang .M, Bai .L.L., Shang .W.H., Xie .W.J., Ma .H, Fu .Y.Y., Fang .D.C., Sun .H, Fan .L. Z., Han .M, Liu .C.M, Yang .S.H. Facile synthesis water-soluble highly fluorescent graphene quantum dots as robust biological label for stem cells. J. Mater. Chem., 2012, 22, 7461-7467.
65) Konstantatos .G, Badioli .M, Gaudreau .L, Osmond .J, Bernechea .M, De Arquer .F.P.G., Gatti .F, Koppens .F.H.L. Hybrid graphene quantum-dots phototransistors with ultrahigh gain. Nat. Nanotechnol.,2012, 7, 363-368.
66) Zhuo .S.J., Shao .M.W., Lee .S.T. Upconversion and Down conversion fluorescent Graphene quantum dots: ultrasonic preparation and photocatalysis. ACS Nano., 2012, 6, 1059-1064.
67) Williams .O.A. Nanocrystalline diamond.Diamond Relat. Mater., 2011, 20, 621-640.
68) Niwase .K, Tanaka .T, Kakimoto .Y, Ishihara .K.N, Shingu .P.H. Raman spectra of diamond and graphite mechanically milled with agate or steel ball mill. Mater. Trans., JIM 1995, 36, 282.
69) Boudou .J.P., Curmi .P.A., Jelezko .F, Wrachtrup .J, Aubert .P, Sennour .M, Balasubramanian .G, Reuter .R, Thorel .A, Gaffet .E. High yield fabrication of fluorescent nanodiamonds. Nanotechnology., 2009, 20, doi: 10.1088/0957-4484/20/23/235602.
70) Dahl .J.E., Liu .S.G., Carlson .R.M.K. Isolation and structure of higher diamondoids, nano-meter sized diamonds molecules. Science. 2003, 299, 96-99.
71) Mochalin .V, Osswald .S, Gogotsi .Y. Contribution of Functional Groups to the Raman Spectrum of Nanodiamond Powders.Chem. Mater., 2009, 21, 273-279.
72) Hu .S, Tian, .F, Bai .P, Cao .S, Sun .J, Yang .J. Synthesis and luminescence of nanodiamonds from carbon black Mater. Sci. Eng., B: Adv. Funct. Solid-State Mater., 2009, 157, 11-14.
73) Kim .Y.A., Muramatsu .H, Hayashi .T, Endo .M, Terrones .M, Dresselhaus .M.S. Fabrication of High-Purity, Double-Walled Carbon Nanotube Buckypaper. Chem. Vap. Deposition., 2006, 12, 327-330.
74) Pfeiffer .R, Pichler .T, Kim .Y.A., Kuzmany .H, Jorio, .A, Dresselhaus .G, Dresselhaus .M. S., Eds.; Carbon Nanotube: Advanced Topics in synthesis , structure and properties. Applied Physics, Vol. 111; Springer-Verlag: Berlin, Heidelberg, Germany, 2008; p 495.
75) Dai .H. Carbon Nanotubes: Synthesis, Integration, and Properties. Acc. Chem. Res., 2002, 35, 1035-1044.
76) Bahr .J.L., Mickelson .E.T., Bronikowski .M.J., Smalley .R.E., Tour .J.M. Dissolution of small diameter of single wall carbon nanotube in organic solvents?. Chem. Commun., 2001, 193-194.
77) Agnihotri .S, Mota .J.P.B., Abadi .M. R., Rood .M.J. Structural Characterization of Single-Walled Carbon Nanotube Bundles by Experiment and Molecular Simulation.Langmuir., 2005, 21, 896-904.
78) Wang .F, Lang .L, Li .B, Liu .W, Li .X,Xu.Z. A novel non-catalytic approach for fabrication of bamboo-like carbon nanotubes.Mater. Lett.,2010, 64, 86-88.
79) Costa .S, Palen .E.B., Kruszynska .M, Bachmatiuk .A, Kalenczuk .R.J. Mater. Characterization of carbon nanotubes by Raman spectroscopy .Sci.-Pol., 2008, 26, 433-441.
80) Melechko .A.V., Merkulov .V. I., McKnight .T.E., Guillorn .M.A., Klein .K.L., Lowndes, D.H., Simpson .M.L.J. Vertically aligned carbon nanofibers and related structures: Contr olled synthesis and directed assembly. Appl. Phys., 2005, 97, 041301- 041339.
81) Inagaki .M, Yang .Y, Kang .F.Y.Carbon NanofibersPrepared via electro-spinning.Adv. Mater., 2012, 24, 2547-2566.
82) Ramos .A, Camean.I,Garcia.A.B. Graphitization thermal treatment of carbon nanofibers. Carbon., 2013, 59, 2-32.
83) Serp .P, Corrias .M, Kalck .P. Carbon nanotubes and nanofibers in catalysis.Appl. Catal. A.,2003, 253, 337-358.
84) Iijima.S, Yudasaka.M, Yamada .R,Bandow.S,Suenaga.K,Kokai.F, Takahashi .K. Nano-aggregates of single-walled graphitic carbon nano-horns. Chem. Phys. Lett.,1999, 309, 165-170.
85) Nikolaos .K, Martinez.I.S., Christopher .P.E, Tagmatarchis .N. Structure, properties, functionalization, and applications of carbon nanohorns. Chem.Rev.,2016,116, 4850-4883.
86) Hashim .D.P., Narayanan .N.T., Romo-Herrera .J.M., Cullen .D.A., Hahm.M.G., Lezzi, .P, Suttle.J.R., Kelkhoff .D., Munoz-Sandoval.E., Ganguli .S et al. Covalently Bonded Three-Dimensional Carbon Nanotube Solids via Boron Induced Nanojunctions. Sci. Rep.,2012, 2, 363.
87) Berber .S, Kwon .Y.K., Tomanek .D. Electronic and structural properties of carbon nanohorns. Phys. Rev. B.,2000, 62, R2291- R2294.
88) Chopra .N.G., Benedict .L.X., Crespi .V.H., Cohen .M.L., Louie.S.G., Zettl.A. Fully Collapsed Carbon Nanotubes. Nature., 1995, 377, 135−138.
89) Yudasaka, M.; Iijima, S.; Crespi, V. H. In Carbon Nanotubes; Jorio, A., Dresselhaus, G., Dresselhaus, M. S., Eds. Topics in Applied Physics, Vol. 111; Springer-Verlag: Berlin, Heidelberg, Germany, 2008, p 605.
90) Yudasaka, M.; Iijima, S.; Crespi, V. H. In Carbon Nanotubes; Jorio, A., Dresselhaus, G., Dresselhaus, M. S., Eds.; Topics in Applied Physics, Vol. 111, Springer-Verlag: Berlin, Heidelberg, Germany, 2008, pp 605− 629.
91) Bandow .S, Rao .A.M., Sumanasekera .G.U., Eklund .P.C., Kokai .F., Takahashi .K, Yudasaka .M, Iijima .S. Evidence for Anomalously Small Charge Transfer in Doped Single-Wall Carbon Nanohorn Aggregates with Li, K and Br. Appl. Phys. A: Mater. Sci. Process., 2000, 71, 561−564.
92) Ambrosi .A, Pumera .M. Nanographite Impurities Dominate Electrochemistry of Carbon Nanotubes. Chem. - Eur. J., 2010, 16, 10946−10949.
93) Verdejo .R, Lamoriniere .S, Cottam .B, Bismarck .A, Shaffer .M. Removal of Oxidation Debris from Multi-Walled Carbon Nanotubes. Chem. Commun. (Cambridge, U. K.),2007, 513−515.
94) Fogden .S, Verdejo .R, Cottam .B, Shaffer .M. Purification of Single Walled Carbon Nanotubes: The Problem with Oxidation Debris. Chem. Phys. Lett., 2008, 460, 162−167.
95) Bellunato .A, ArjmandiTash .H, Cesa .Y, Schneider .G.F. Chemistry at the Edge of Graphene. Chem. Phys.Chem., 2016, 17, 785− 801.
96) Wong C.H.A.,Sofer.Z,Kubešová.M,Kučera.J,Matějková.S,Pumera.M. Synthetic Routes Contaminate Graphene Materials with a Whole Spectrum of Unanticipated Metallic Elements. Proc. Natl. Acad. Sci. U. S. A.,2014, 111, 13774−13779.
97) Kasuya .D, Yudasaka .M, Takahashi .K, Kokai .F, Iijima .S. Selective Production of Single-Wall Carbon Nanohorn Aggregates and Their Formation Mechanism. J. Phys. Chem. B.,2002, 106, 4947−4951.
98) Pagona .G, Mountrichas.G, Rotas.G, Karousis.N, Pispas.S, Tagmatarchis.N. Properties, Applications and Functionalisation of Carbon Nanohorns. Int. J. Nanotechnol., 2009, 6, 176−195.
99) Zhu .S, Xu .G. Single-walled Carbon Nanohorns and their Applications. Nanoscale.,2010, 2, 2538−2549.
100) Hernandez .Y, Nicolosi .V, Lotya .M, Blighe .F.M., Sun .Z.Y., De .S, McGovern .I.T., Holland .B, Byrne .M.,Gun’ko .Y.K., Boland .J.J., Niraj .P., Duesberg .G, Krishnamurthy .S, Goodhue .R, Hutchison .J, Scardaci .V, Ferrari .A.C., Coleman .J.N. High yield production of graphene by liquid phase exfoliation of graphite.Nat. Nanotechnol., 2008, 3, 563-568.
101) Meyer .J.C., Kisielowski .C, Erni .R, Rossell .M.D., Crommine .M.F., Zettl.A. Direct Imaging of Lattice Atoms and Topological Defects in Graphene Membranes Nano Lett., 2008, 8, 3582-3856.
102) Nakada .K, Fujita .M, Dresselhaus .G, Dresselhaus .M.S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B.,1996, 54, 17954−17961.
103) Geim, A. K. Graphene: Status and Prospects. Science.,2009, 324, 1530−1534.
104) Bolotin .K.I., Sikes .K.J, Jiang .Z, Klima .M, Fudenberg .G, Hone .J, Kim .P, Stormer .H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun.,2008, 146, 351−355.
105) Du .X, Skachko .I, Barker .A, Andrei .E.Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol.,2008, 3, 491−495.
106) Pop .E, Varshney .V, Roy .A.K. Thermal properties of graphene: Fundamentals and applications. MRS Bull. 2012, 37, 1273− 1281.
107) Liang Yan, Yue Bing Zheng, Feng Zhao, Shoujian Li, XingfaGao, BingqianXu, Paul S. Weiss, Yuliang Zhao. Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chem.Soc.Rev.,2012,41, 97-114.
108) Liu .S, Zeng .T.H., Hofmann .M, Burcombe .E, Wei .J, Jiang .R, Kong .J, Chen .Y. Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. ACS Nano., 2011, 5, 6971-6980.
109) Brodie .B.C., Philos. On the Atomic Weight of Graphite. Trans. R. Soc. London., 1859, 149, 249-259.
110) Zhang .L, Liang .J, Huang .Y, Ma .Y, Wang .Y, Chen .Y. Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation.Carbon, 2009, 47, 3365–3368.
111) Dreyer .D.R, Sungjin Park .S, Bielawski C.W., Ruoff. R.S. The Chemistry of Graphene Oxide. Chem.Sov.Rev., 2010, 39, 228-240.
112) Dreyer .D.R., Bielawski C.W. Carbocatalysis: Heterogeneous carbons finding utility in synthetic Chemistry. Chem. Sci., 2011, 2, 1233-1240.
113) Dreyer .D.R., Jia H.P., Bielawski.C.W. Graphene Oxide: A convenient carbon catalyst for facilitating oxidation and hydration reactions. Angew.Chem.Int.Ed.,2010, 49, 6813-6816.
114) Chul .C, Kim .Y.K., Shin .D, Ryoo .S.R., Hong .B.H., Min .D.H. Biomedical applications of graphene and graphene Oxide. Acc. Of. Chem.Research., 2013, 46, 2211-2224.
115) Bourlinos .A.B., Steriotis .T.A., Zboril .R, Georgakilas .V, Stubos .A. Direct synthesis of carbon nanosheets by the solid-state pyrolysis of betaine. J. Mater. Sci., 2009, 44, 1407-1411.
116) Terrones .M, Botello-Mendez .A.R., Campos-Delgado .J, Lopez-Urias .F, Vega-Cantu .Y.I., Rodriguez-Macias .F.J., Elias .A.L., Munoz-Sandoval .E, Cano-Marquez .A.G., Charlier .J.C., Terrones .H. Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications Nano Today., 2010, 5, 351-372.
117) Chen .L, Hernandez.Y, Feng .X.L., Mullen .K. From Nanographene and Graphene Nanoribbons to Graphene Sheets: Chemical Synthesis. Angew. Chem.,Int. Ed., 2012, 51, 7640.
118) James, D. K., Tour, J. M. Graphene: Powder, Flakes, Ribbons, and Sheets.Acc. Chem. Res., 2013, 46, 2307-2318.
119) James, D. K.; Tour, J. M. The Chemical Synthesis of Graphene Nanoribbons- A Tutorial Review. Macromol. Chem. Phys., 2012, 213, 1033-1055.
120) Hare .J.P., Kroto .H.W., Taylor .R. Preparation and ‘UV/visible spectra of fullerenes C60, and C70Chem.Phys. Lett.,1991, 177, 394-398.
121) Scrivens .W.A., Tour .J.M. Synthesis of gram quantities of C60 by plasma discharge in a modified round-bottomed flask. Key parameters for yield optimization and purification. J.Org. Chem., 1992, 57, 6932-6936.
122) Kroto.H.W. Space, Stars, C60 and Soot. Science.,1988, 242, 1139.
123) Taylor .R, Langley .G.J., Kroto .H.W., Walton .D.R.M. Formation of C60 by pyrolysis of naphthalene. Nature., 1993, 366, 728-731.
124) Howard .J.B., McKinnon .J.T., Makarovsky .Y, Lafleur .A.L., Johnson .M.E. Fullerenes C60 and C70 in flames. Nature., 1991, 352, 139-141.
125) Homann .K. H. Fullerenes and Soot Formation New Pathways to Large Particles in Flames. Angew. Chem., Int. Ed., 1998, 37, 2434-2451.
126) Murayama .H, Tomonoh .S, Alford .J.M., Karpuk .M.E. Fullerenes, Nanotubes, Carbon Nanostruct., 2004, 12, 1.
127) Anctil .A, Babbitt C. W., Raffaelle .R. P., Landi .B. J. Material and Energy Intensity of Fullerene Production. Environ. Sci. Technol., 2011, 45, 2353-2359.
128) Mojica .M, Alonso .J.A., Méndez .F. Synthesis of Fullerenes. J. Phys. Org. Chem., 2013, 26, 526-535.
129) Viñes .F, Görling A. Template-Assisted Formation of Fullerenes from Short-Chain Hydrocarbons by Supported Platinum Nanoparticles. Angew. Chem., Int. Ed.,2011, 123, 4707-4714.
130) De Hee .W.A., Ugarte .D. Formation mechanism of quasi-spherical carbon particles induced by electron bombardment. Chem. Phys. Lett., 1993, 207, 480-486.
131) Sano .N, Wang .H, Chhowalla .M, Alexandrou .I, Amaratunga .G.A. Nanotechnology: Synthesis of carbon 'onions' in water. Nature., 2001, 414, 506-507.
132) Sano .N, Wang .H, Alexandrou .I, Chhowalla .M, Teo .K.B.K., Amaratunga .G.A.J., Iimura .K. Properties of carbon onions produced by an arc discharge in water. J. Appl. Phys., 2002, 92, 2783-2788.
133) Alexandrou .I, Wang .H, Sano .N, Amaratunga .G.A.J. Structure of carbon onions and nanotubes formed by arc in liquids. J. Chem. Phys., 2004, 120, 1055-1058.
134) Cabioc’h .T, Girard .J.C., Jaouen .M, Denanot .M.F., Hug .G. Carbon onions thin film formation and characterization. Europhys. Lett., 1997, 38, 471-476.
135) Cabioc’h .T, Jaouen .M, Denanot .M.F., Bechet .P. Influence of the implantation parameters on the microstructure of carbon onions produced by carbon ion implantation. Appl. Phys. Lett., 1998, 73, 3096,doi: http://dx.doi.org/10.1063/1.122684.
136) Xu .X.Y., Ray .R, Gu .Y.L., Ploehn .H.J., Gearheart .L, Raker .K, Scrivens .W.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc., 2004, 126, 12736-12737.
137) Li .H, Kang .Z, Liu .Y, Lee .S.T. Carbon nanodots: synthesis, properties and applications. J. Mater. Chem., 2012, 22, 24230-24253.
138) Sun .Y.P., Zhou .B, Lin .Y, Wang .W, Fernando .K.A.S., Pathak .P, Meziani .M.J., Harruff .B.A., Wang .X, Wang .H.F, Luo .P.G.,Yang .H, Kose .M.E., Chen .B.L., Veca .L. M., Xie .S.Y. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc., 2006, 128, 7756-7757.
139) Zheng .L.Y., Chi. Y.W., Dong .Y.Q., Lin .J. P., Wang. B. B. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J. Am. Chem. Soc., 2009, 131, 4564-4565.
140) Zhao .Q.L., Zhang .Z.L., Huang .B.H., Peng. J., Zhang .M, Pang .D.W. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem. Commun., 2008, 5116-5118.
141) Zhou .J.G., Booker .C, Li .R.Y., Zhou .X.T.; Sham .T.K., Sun .X. L., Ding .Z. F. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J. Am. Chem. Soc., 2007, 129, 744-745.
142) Bacon .M, Bradley .S.J, Nann .T. Graphene Quantum Dots. Part. Part. Syst. Charact., 2014, 31, 415-428.
143) Li .L.L., Ji .J, Fei .R, Wang .C.Z., Lu .Q, Zhang .J.R., Jiang .L.P., Zhu .J.J. A Facile Microwave Avenue to Electrochemiluminescent Two-Color Graphene Quantum Dots. Adv. Funct. Mater., 2012, 22, 2971-2979.
144) Shinde .D. B., Pillai .V. K. Electrochemical Preparation of Luminescent Graphene Quantum Dots from Multiwalled Carbon Nanotubes. Chem.Eur. J., 2012, 18, 12522-12528.
145) Dongv .Y, Pangv .H, Renv .S, Chen .C, Chiv .Y, Yuv .T. Etching single-wall carbon nanotubes into green and yellow single-layer graphene quantum dots. Carbon., 2013, 64, 245-261.
146) Ananthanarayanan .A, Wang .X, Routh .P, Sana .B, Lim .S, Kim .D.H., Lim .K.H., Li. J, Chen. P.Synthesis of Graphene Quantum Dots from 3D Graphene and their Application for Fe3+ Sensing. Adv. Funct. Mater., 2014, 24, 3021-3026.
147) Liu .R, Wu .D, Feng .X, Mullen K. Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J. Am. Chem. Soc., 2011, 133, 15221-15223.
148) Shenderova .O.A., Grue .D.M., Eds. Ultrananocrystalline Diamond: Synthesis, Properties, and Applications; William Andrew Inc.: Norwich, NY, 2006.
149) Krueger .A. Diamond Nanoparticles: Jewels for Chemistry and Physics. Adv. Mater., 2008, 20, 2445-2449.
150) Prasek .J, Drbohlavova .J, Chomoucka .J, Hubalek .J, Jasek .O, Adam .V, Kizek .R. Methods for carbon nanotubes synthesis—review. J. Mater. Chem., 2011, 21, 15872-15884.
151) Journet .C, Maser .W.K., Bernier .P, Loiseau .A, delaChapelle .M.L., Lefrant .S, Deniard .P, Lee .R, Fischer .J. E. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature., 1997, 388, 756-758.
152) Azami .T, Kasuya .D, Yuge .R, Yudasaka .M, Iijima .S, Yoshitake .T, Kubo .Y. Large-Scale Production of Single-Wall Carbon Nanohorns with High Purity. J. Phys. Chem. C., 2008, 112, 1330-1334.
153) Gattia .D.M., Vittori .A.M., Marazzi .R. AC arc discharge synthesis of single-walled nanohorns and highly convoluted graphene sheets. Nanotechnology., 2007, 18, 255604.
154) Khan .U, O’Neill, A .Lotya .M, De .S, Coleman .J. N. High-Concentration Solvent Exfoliation of Graphene. Small., 2010, 6, 864-871.
155) Bourlinos .A.B., Georgakilas .V, Zboril .R, Steriotis .T.A., Stubos .A.K. Liquid-phase exfoliation of graphite towards solubilized graphenes. Small., 2009, 5, 1841-1845.
156) Georgakilas .V, Kouloumpis .A, Gournis .D, Bourlinos .A, Trapalis .C, Zboril .R. Tuning the Dispersibility of Carbon Nanostructures from Organophilic to Hydrophilic: Towards the Preparation of New Multipurpose Carbon-Based Hybrids. Chem.Eur. J., 2013, 19, 12884-12891.
157) Hamilton .C.E., Lomeda .J.R., Sun .Z.Z., Tour .J.M., Barron .A.R. High-yield organic dispersions of unfunctionalized graphene. Nano Lett., 2009, 9, 3460-3462.
158) De .S, King .P.J., Lotya .M, O’Neill .A., Doherty .E.M., Hernandez .Y, Duesberg .G.S., Coleman .J.N. Flexible, Transparent, Conducting Films of Randomly Stacked Graphene from Surfactant-Stabilized, Oxide-Free Graphene Dispersions. Small., 2010, 6, 458-464.
159) Herron .C.R., Coleman .K.S., Edwards .R.S., Mendis .B.G. Simple and scalable route for the ‘bottom-up’ synthesis of few-layergraphene platelets and thin films. J. Mater.Chem., 2011, 21, 3378-3383.
160) Liu .M, Yan .Y, Zhang .L, Wang .X, Wang .C. Hydrothermal preparation of carbon nanosheets and their supercapcitive behavior. J. Mater. Chem., 2012, 22, 11458-11461.
161) Kuang .Q, Xie .S.Y., Jiang .Z.Y., Zhang .X.H., Xie .Z.X., Huang .R.B., Zheng .L.S. Low temperature solvothermal synthesis of crumpled carbon nanosheets. Carbon., 2004, 42, 1737-141.
162) Kosynkin .D.V., Higginbotham .A.L., Sinitskii .A., Lomeda .J.R., Dimiev .A., Price .B. K., Tour .J.M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature., 2009, 458, 872-876.
163) Jiao .L, Wang .X, Diankov .G, Wang .H, Dai .H. Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol., 2010, 5, 321-325.
164) Kim .K, Sussman .A, Zettl .A. Graphene Nanoribbons Obtained by Electrically Unwrapping Carbon Nanotubes. ACS Nano., 2010, 4, 1362-1366.
165) Han .M.Y., Oezyilmaz .B, Zhang .Y, Kim .P. Energy band gap engineering of Graphene Nanoribbons. Phys. Rev. Lett., 2007, 98,DOI: 10.1103/PhysRevLett.98.206805 .
166) Yang .X, Dou. X, Rouhanipour .A, Zhi .L, Rader .H.J., Mullen .K. Two dimenisional graphene nanoribbons. J. Am. Chem. Soc.,2008, 130, 4216-4217.
167) Campos-Delgado .J, Romo-Herrera .J.M., Jia .X.T., Cullen .D.A., Muramatsu .H, Kim .Y.A., Hayashi .T, Ren .Z.F., Smith .D.J., Okuno .Y, Ohba .T, Kanoh .H, Kaneko .K, Endo .M, Terrones .H, Dresselhaus .M S., Terrones .M. Crystalline graphene nanoribbons. Nano Lett.,2008, 8, 2773-27778.
168) Guosong .H, Shuo .D, Alexander L.A, Hongjie D. Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy .Chem.Rev.,2015, 115,10816-10906.
169) Wu .H.C., Chang .X.L., Liu .L, Zhao .F, Zhao Y.L. Chemistry of carbon nanotubes in biomedical applications. J. Mater. Chem., 2010, 20, 1036–1052.
170) Liu .J, Rinzler .A.G., Dai .H.D, Hafner .J.H, Bradley .R.K., Boul P.J., Lu .A, Iverson .T, Shelimov .K, Huffman C.B., Rodriguez-Macias .F, Shon .Y.S, Lee .T.R., Colbert .D.T. and Smalley .R.E. Fullerene Pipes. Science.,1998, 280, 1253–1256.
171) Hirsch .A, Brettreich .M. Fullerenes: Chemistry and Reactions; John Wiley & Sons: Hoboken, NJ, 2006.
172) Maggini .M, Scorrano .G, Prato .M. Addition of AzomethineYlides to C-60 Synthesis, Characterization, and Functionalization of FullerenePyrrolidines. J. Am. Chem. Soc., 1993, 115, 9798−9799.
173) Bingel .C. Cyclopropanierung von fullerenen. Chem. Ber., 1993, 126, 1957−1959.
174) Chiang .L.Y., Bhonsle .J.B., Wang .L.Y., Shu .S.F., Chang .T.M.,. Hwu .J.R. Efficient one-flask synthesis of water-soluble [60]- fullerenols. Tetrahedron.,1996, 52, 4963−4972.
175) Kam .N.W.S., Jessop .T. C., Wender .P.A., Dai .H.J. Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc., 2004, 126, 6850− 6851.
176) Cognet .L, Tsyboulski .D.A., Rocha .J.D.R., Doyle .C.D., Tour .J.M., Weisman .R.B. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science., 2007, 316,1465−1468.
177) Kaur .P, Shin .M.S., Sharma .N, Kaur .N, Joshi .A, Chae .S.R., Park .J.S., Kang .M.S., Sekhon .S.S. Non-Covalent Functionalization of Graphene with Poly(diallyldimethylammonium) Chloride: Effect of a Non-Ionic Surfactant. Int. J. Hydrogen Energy., 2015, 40, 1541−1547.
178) Geim .A.K., Novoselov .A. K. The rise of graphene. Nat. Mater., 2007, 6, 183-191.
179) Wang .S, Tang .L.A.L., Bao .Q.L., Lin .M, Deng .S.Z., Goh .B.M., Loh .K.P. Room-Temperature Synthesis of Soluble Carbon Nanotubes by the Sonication of Graphene Oxide Nanosheets. J. Am. Chem. Soc., 2009, 131, 16832-16837.
180) Xu .Z.W., Chen .L, Zhou .B.M., Li .Y.L., Li .B.D., Niu .J.R., Shan .M.J., Guo .Q.W., Wang .Z, Qian .X.M.Nano-structure and property transformation of carbon systems under ray irradiation: a review. RSC Adv., 2013, 3, 10579-10597.
181) Smalley .R.E. Self-assembly of the fullerenes. Acc. Chem. Res., 1992, 25, 98-105.
182) Heath .J. R. Synthesis of C60 from Small Carbon Clusters. ACS Symp. Ser., 1991, 481, 1 , pg 1-23, DOI: 10.1021/bk-1992-0481.ch001.
183) Hunter .J M., Fye .J. F., Roskamp .E. J., Jarrold .M.F. Annealing carbon cluster ions—a mechanism for fullerene synthesis. J. Phys. Chem., 1992, 98, 1810-1818.
184) Huang .J.Y., Ding .F, Jiao .K, Yakobson .B.I. Real Time Microscopy, Kinetics, and Mechanism of Giant Fullerene Evaporation. Phys. Rev. Lett., 2007, 99, DOI: 10.1103/PhysRevLett.99.175003.
185) Kim .W.S., Moon .S.Y., Bang .S.Y., Choi .B.G., Ham .H, Sekino .T, Shim .K.B. Fabrication of graphene layers from multiwalled carbon nanotubes using high dc pulse. Appl. Phys. Lett., 2009, 95, DOI: 10.1063/1.3213350.
186) Yusa .H. Nanocrystalline diamond directly transformed from carbon nanotubes under high pressure. DiamondRelat. Mater., 2002, 11, 87-91.
187) Chernogorova .O, Potapova .I, Drozdova .E, Sirotinkin .V, Soldatov .A.V.,Vasiliev .A, Ekimov .E. Structure and physical properties of nanoclusteredgraphene synthesized from C60 fullerene under high pressure and high temperature.Appl. Phys. Lett., 2014, 104, doi: 10.1063/1.4863470.
188) Nasibulin .A.G., Pikhitsa .P.V., Jiang .H, Brown .D.P., Krasheninnikov .A.V.; Anisimov .A.S., Queipo .P, Moisala .A, Gonzalez .D, Lientschnig .G, Hassanien .A, Shandakov .S.D., Lolli .G, Resasco .D.E., Choi .M, Tomanek .D, Kauppinen .E.I. A novel hybrid carbon material. Nat. Nanotechnol., 2007, 2, 156-161.
189) Chowdhury .I, Duch .M.C., Mansukhani .N.D., Hersam .M.C., Bouchard .D. Colloidal Properties and Stability of Graphene Oxide Nanomaterials in the Aquatic Environment. Environ. Sci. Technol., 2013, 47, 6288−6296.
190) Achari .A, Datta .K.K.R., De .M, Dravid .V.P., Eswaramoorthy M. Amphiphilic Aminoclay-RGO Hybrids: ASimple Strategy to Disperse a High Concentration of RGO in Water. Nanoscale., 2013, 5, 5316−5320.
191) Reber .C., Yee .L., Mckiernan .J, Zink .J.I., Williams .R.S., Tong .W, Ohlberg .D.A. A., Whetten.R.L., Diederich .F. Luminescence and Absorption-Spectra of C60 Films. J. Phys. Chem., 1991, 95, 2127−2129.
192) Guclu .A.D., Potasz .P, Hawrylak .P. Excitonic absorption in gate-controlled graphene quantum dots. Phys. Rev. B., 2010, 82, 155445.
193) Yu .S.J., Kang .M.W., Chang .H.C., Chen .K.M., Yu .Y.C. Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity. J. Am. Chem. Soc., 2005, 127, 17604−17605.
194) Aharonovich .I,Greentree .A.D., Prawer S. Diamond photonics. Nat. Photonics., 2011, 5, 397−405.
195) Hui.Y.Y., Su .L.J., Chen .O.Y., Chen .Y.T., Liu .T.M., Chang .H.C. Wide-field imaging and flow cytometric analysis of cancer cells in blood by fluorescent nanodiamond labeling and time gating. Sci. Rep., 2014, 4, 5574.
196) Ray .S.C., Saha .A, Jana .N. R., Sarkar .R. Fluorescent Carbon Nanoparticles: Synthesis, Characterization, and Bioimaging Application. J. Phys. Chem. C., 2009, 113, 18546−18551.
197) Cushing .S.K., Li .M., Huang.F. Q., Wu .N.Q. Origin of Strong Excitation Wavelength Dependent Fluorescence of Graphene Oxide. ACS Nano.,2014, 8, 1002−1013.
198) Devika .C.B, Arezou .A.G, Warren .C.W.C. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett., 2006, 6(4),662–668.
199) Julie .A.C, Samir M. Role of target geometry in phagocytosis. Proc Natl Acad Sci USA.,2006,103(13), 4930–4934.
200) Stephanie .E.A.G, Patricia .A.R., Patrick .D.P., Christopher. J.L., Victoria .J.M., Mary .EN., et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA., 2008,105(33),11613–11618.
201) Tsai .H.C., Chang .C.H., Chiu .Y.C., Lin .S.Y., Lin .C.P., Hsiue .G.H. In vitro evaluation of hexagonal polymeric micelles in macrophage phagocytosis. Macromol Rapid Commun., 2011,32(18),1442–1446.
202) Decuzzi .P.G., Tanaka .B, Lee .T, Chiappini .S.Y., Liu .C.X., Ferrari .M. Size and shape effects in the biodistribution of intravascularly injected particles. J Controlled Release., 2010,141(3),320–327.
203) Mu .Q, Broughton .D.L., Yan .B. Endosomal leakage and nuclear translocation of multiwalled carbon nanotubes: developing a model for cell uptake. Nano Lett., 2009,9(12),4370–4375.
204) Tsai .H.C., Lin .J.Y., Maryani .F, Huang .C.C., Imae T. Drug loading capacity and nuclear targeting of multi-walled carbon nanotubes grafted with anionic amphiphilic copolymers. Int J. Nanomed., 2013,8(1),4427–40.
205) Vaisman .L, Wagner .H.D., Marom .G. The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci., 2006,128–130,37–46.
206) Qiana .H.S., Han .F.M., Zhang .B, Yan .C.G., Jun .Y, Peng .B.X. Noncatalytic CVD preparation of carbon spheres with a specific size. Carbon., 2004,42(4),761–766.
207) Ji .B.J., Kimb .P, Wooyoung .K, Jongsik .K, Kima .N.D. Simple preparation of hollow carbon sphere via templating method. Curr Appl Phys., 2008,8(6),814–817.
208) Friedel .B, Siegmund .G.W. Preparation of monodisperse submicrometer carbon spheres by pyrolysis of melamineformaldehyde resin. Small., 2006,2(7),859–63.
209) Niki .B, Guillaume .L, Florence .B, Franck .F, Titirici .M.M., Markus .A. Structural characterization of hydrothermal carbon spheres by advanced solid-state, MAS 13C NMR investigation. J .Phys .Chem .C., 2009,113(22),9644–9654.
210) Hu .B, Wang .K, Wu .L, Yu .S.H, Markus .A, Tritrici .M.M. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater., 2010,22(7),813–828.
211) Sun .X, Li .Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem Int Ed., 2004,43(5),597–601.
212) Marta .S, Lota .G, Antonio .B.F. Saccharide-based graphitic carbon nanocoils as supports for PtRu nanoparticles for methanol electro oxidation. J Power Source., 2007,171(2), 546.
213) Yongsoon .S, Wang .L.Q., Bae .I.T., Bruce .W.A, Gregory .J.E. Hydrothermal syntheses of colloidal carbon spheres from cyclodextrins. J .Phys. Chem .C., 2008,112(37),14236–40.
214) Yao .C, Yongsoon .S, Wang .L.Q, Charles .Jr. F.W., William .D.S., Bruce .W.A, et al. Hydrothermal dehydration of aqueous fructose solution in a closed system. J .Phys .Chem. C., 2007,111(42),15141–15145.
215) Wei .L, Zhang .Z, Kong. B, Feng .S,Wang .J, Wang .L, et al. Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging. Angew Chem Int Ed ., 2013,52(31),8151–8155.
216) Yang. Y, Jianghu .C, Zheng .M, Hu .C, Shaozao .T, Yong .X, et al. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem Commun., 2012,48(3),380–382.
217) Yang .Z.C, Zhang .Y, Kong .J.H, Wong .S.Y., Li .X, Wang .J. Hollow carbon nanoparticles of tunable size and wall thickness by hydrothermal treatment of a-cyclodextrin template by F127 block copolymers. Chem Mater., 2013,25(5),704–710.
218) Tao .L, Gao .L, Liu .J, Chen. L, Shen .J, Wang. L, et al. Olivary particles: unique carbon microstructure synthesized by catalytic pyrolysis of acetone. J. Phys. Chem. B., 2005,109(32),15272–15277.
219) Zhan .Y.J., Yu .S.H. Direct synthesis of carbon-rich composite sub-microtubes by combination of a solvothermal route and a succeeding self-assembly process. J Phys Chem C., 2008,112(11),4024–4028.
220) Kenneth .A.M., Moore .R.B. State of understanding of Nafion. Chem.Rev., 2004,104(10),4535–4585.
221) Yanqia .W, Yoshio .K, Steven .R.A., Richard .A.P. TGA and timedependent FTIR study of dehydrating Nafion-Na membrane. Macromolecules., 2003,36(4),1138–1146.
222) Niki .B, Guillaume. L, Florence. B, Franck .F, Titirici .M.M., Markus .A. Structural characterization of hydrothermal carbon spheres by advanced solid-state MAS 13C nmr investigations. J .Phys .Chem. C., 2009,113(22),9644–9654.
223) Liang. Z, Chen.W, Liu. J,Wang .S, Zhou .Z, Li.W, et al. FT-IR study of the microstructure of Nafion_ membrane. J .Membr. Sci., 2004,233(1–2),39–44.
224) Kweon .D.K, Lim .S.T. Preparation and characteristics of a water-soluble chitosan–heparin complex. J .Appl .Polym .Sci., 2003,87(11),1784–1789.
225) Chai .Z, Wang .C, Hongjie. Z, Doherty .C.M., Bradley .P.L., Anita .J.H., et. al. Nafion–carbon nanocomposite membranes prepared using hydrothermal carbonization for protonexchange- membrane fuel cells. Adv. Func .Mater., 2010,20(24),4394–4399.
226) Liu. H, Ye .T, Mao .C. Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed., 2007,46(34),6473–6475.
227) Benjamin .J.W., Chen .Y, Jospeh .M.M., Xiong .Y, Li. Z.Y., Ginger. D, et al. Synthesis and optical properties of Silver Nanobars and Nanorice. Nano Lett.,2007,7(4),1032–1036.
228) Ludvigsson .M, Lindgren .J, Tegenfeldt .J. Crystallinity in cast Nafion_. J Electrochem Soc 2000,147(4),1303–1305.
229) Lee .S.H, Mathews .M, Toghiani .H, David .O.W., Charles .Jr .U.P. Fabrication of carbon-encapsulated mono- and bimetallic (Sn and Sn/Sb alloy) nanorods. Potential lithium-ion battery anode materials. Chem. Mater., 2009,21(11),2306–2314.
230) Rangasamy .J, Nitar .N, Hideaki .N, Tetsuya .F, Hiroshi T. Synthesis, characterization and biospecific degradation behavior of sulfated chitin. Macromol Symp., 2008,264(1),163–167.
231) Ke .J-H, Kumar. A.S., Sue .J.W., Venkatesan .S, Zen. J.M. Catalysis and characterization of a rugged lead ruthenate pyrochlore membrane catalyst. J Mol Catal A: Chem., 2005, 233(1– 2),111–120.
232) Ramaiyan .K, Bhalchandra .A.K., Vijayamohanan .K.P. Polymer electrolyte fuel cells using Nafion-based composite membranes with functionalized carbon nanotubes. Angew Chem Int Ed., 2008,47(14), 2653–2656.
233) Shiori .K, Irene .T, White .R.J., Markus .A, Titirici .M.M. Template synthesis of carbonaceous tubular nanostructures with tunable surface properties. Chem. Mater., 2010,22(24),6590–6597.
234) Jung .J.H., Jeon .J.H., Sridhar .V, Oh .I.K. Electroactive graphene– Nafion actuators. Carbon., 2011,49(4),1279–89.
235) Eufrozina .A.H., Zoltan .A.F., Ljiljana .S.K.K., Frank .E.K., Eugene W. Theoretical and experimental X-ray photoelectron spectroscopy investigation of ion-implanted Nafion. J .Polym. Sci. Polym. Chem., 2004,42(3),551–556.
236) Kuznetsova .A, Popova .I, John .Jr .T.Y., Bronikowski .M.J., Chad .B.H., Jie .L, et al. Oxygen-containing functional groups on singlewall carbon nanotubes: NEXAFS and vibrational spectroscopic studies. J .Am .Chem .Soc., 2001,123(43),10699–10704.
237) Wang .Y.Q., Peter .M.A.S. Studies of carbon nanotubes and fluorinated nanotubes by X-ray and ultraviolet photoelectron spectroscopy. Chem .Mater., 2004;16(25):5427–5436.
238) Kay .H.A., Jeong .G.H., Jeon .K.G., Dong .J.B., Chulsu .J, Cheol.W, et al. X-ray photoemission spectroscopy study of fluorinated single-walled carbon nanotubes. Appl. Phys. Lett., 2002,80(22),4235–4237.
239) Zhu .C, Zhai .J, Dong .S. Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chem Commun., 2012, 48(75),9367–9369.
240) Wei .X.L. XPS study of highly sulfonated polyaniline. Macromolecules., 1999, 32(9), 3114–3117.
241) Liang .Z, Weimin. C, Jianguo .L, Wang .S, Zhou .Z, Wenzhen .L, et al. FT-IR study of the microstructure of Nafion membrane. J .Membr. Sci.,2004,233(1–2),39–44.
242) Kennith .A, Jandik, Dale .K, Michelle .C, Robert .J.L. Accelerated stability studies of Heparin. J. Pharam .Sci .,1996,85(1),45–51.
243) Sachdev .A, Ishita .M, Uday Kumar .S, Bharat .B, Poornima .D, Gopinath .P. A novel one-step synthesis of PEG passivated multicolour fluorescent carbon dots for potential biolabeling application. RSC .Adv., 2013,3(38),16958–16961.
244) Xin.W, Li .C, Yang .S.T, Fushen .L, Mohammed .J.M., Leilei.T et. al. Band gap-like strong fluorescence in functionalized carbon nanoparticles. Angew Chem Int Ed.,2010,49(31),5310–5314.
245) Jia .X, Li .J, Erkang W. One-pot green synthesis of optically pHsensitive carbon dots with upconversion luminescence. Nanoscale .,2012,4(18),5572–5575.
246) Sun .Y.P, Zhou .B, Yi .L, Wang .W. Fernando KAS, Pathak .P et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J.Am.Chem.Soc., 2006,128(24),7756–7757.
247) Vasilios.G, Jason .A.P. , Jiri .T, Radek.Z , Board family of carbon nano allotropies: classification chemistry and application of fullerenes, carbondots, nanotubes, graphene, nanodiamonds and combined superstructures, Chem. Rev.,2015, 115(11), 4744-4822.
248) Chechetka .S.A., Zhang .M, Yudassaka .M, Miyako .E, Physicochemically functionalized carbon nanohorns for multi-dimensional cancer elimination, Carbon., 2016, 97, 45-53.
249) Karousis .N,Martinez .I.S., Ewels .C.P., Tagmatarchis.N. Strucutre, properties, functionalization and application of carbon nanohorns, Chem. Rev., 2016, 116(8), 4850-4883.
250) Iijima .S, Yudasaka .M, Yamada .R, Bandow .S, Suenaga .K, Kokai .F, Takahashi .K. Nano-aggregates of single- walled graphitic cabon nao-horns, Chem .Phys. Lett.,1999,309 (3-4), 165-170.
251) Yamaguchi .T, Bandow .S, Iijima .S. Synthesis of carbon nanohorn particle by simple pulsed ignited between pre heated carbon rods arc discharge. Chem. Phys. Lett.,2004, 389(1-3), 181-185.
252) Li .N, Wang .Z, Zho .K, Shi .Z, Gu .Z, Xu .S, Synthesis of single- wall carbon nanohorns by arc- discharge in air and their formation mechanism, Carbon.,2010, 48(5), 1580-1585.
253) Schiavon .M, Device and method for production of carbon nanotube, fullerene and their derivatives, U.S. Patent 7,125,525 EP 1428794 (Filed 2003, granted 2006).
254) Zhang .J, Zou .H, Qing .Q, Ying .Y, Li .Q, Liu .Z, Guo .X, Du .Z. Effect of chemical oxidation on the structure of carbon nanotubes, J .Phys .Chem. B., 2003, 107(16), 3712-3718.
255) Lin .Y, Meziani .M.J., Sun .Y.P., Functionalized carbon naotubes for polymeric nanocomposites, J. Mater. Chem.,2007,17, 1143-1148.
256) Aryee .E, Dalai .A, Adjaye .J Functionalization and characterisation of carbon nanohorns (CNHs) for Hydro treating of gas oils, Top .Catal., 2014, 57, 796-805.
257) Bekyarova .E, Kaneko .K, Yudasaka .M, Kasuya .D, Iijima .S, Huidobro .A Controlled opening of single –wall carbon nanohorns by heat treatment in Carbon dioxide, J. Phys. Chem .B., 2003,107(19),4479-4484.
258) Bekyarova .E, Kaneko .K, Yudasaka .M , Kasuya .D , Iijima .S Oxidation and porosity evaluation of budlike single-wall carbon nanohon Aggregates, Langmuir., 2002,18(10) , 4138-4141.
259) Huang .W, Zhang .J.F, Dorn .H.C., Geohegan .D, Zhang .C Assembly of single-wall carbon nanohorn supported liposome particles, Bioconjugate .Chem., 2011, 22(6), 1012−1016.
260) Yang .S.T., Cao .L, Luo .P.G., Lu .F, Wang .X, Wang .H, Meziani .M.J., Liu Y.F., Qi .G, Sun .Y.P. Carbon Dots for optical imaging in vivo, J. Am .Chem .Soc., 2009, 131(32) , 11308-11309.
261) Hsiao .W.W.W., Hui .Y.Y., Tsai .P.C., Chang .H.C, Fluoresecent nanodiomanod; A versatile tool for long–term cell tracking, super-resolution imaging, and nanoscale temperature sensing, Acc. Chem. Res ., 2016,49, 400- 407.
262) Wen .J, Xu .Y, Li .H, Lu .A,Sun .S Recent Application of Carbon nanomaterials in fluorescence biosensing and bioimaging, Chem. Commun.,2015,51,11346-11358.
263) Parasuraman .P.S., Tsai .H.C., Iame .T. In-situ hydrothermal Synthesis of carbon nanorice using Nafion as a template, Carbon.,2014,77, 660-666.
264) Cheol .M.Y., Daisuke .K, Masako .Y, Sumio .I, Katsumi .K Microporosity development of single wall carbon nanohorn with chemically induced coalescence of assembly Structure, J. Phys. Chem. B., 2004, 108, 17775-17778.
265) Zhang .X, Merenad .E.L., Castleman .A.W., Reaction of water cluster with nitric acid, J. Phys. Chem., 1994, 98,3554-3557.
266) Minfang .Z, Masako .Y, Kumiko .A, Jin .M, Sumio .I Light sssisted oxidation of single wall carbon nanohors for abundant creation of oxygen groups that enable chemical modification with proteins to enhance biocompatibility, ACS NANO., 2007, 1, 265-272.
267) Liang .Z, Chen .W, Liu .J,Wang .S, Zhou .Z, Li .W, FT-IR study of Nafion Membrane,J. Membr. Sci.,2004 ,233 (1-2) 39-44.
268) Kweon .D.K., Lim S.T. Preparation and characterization of a water- soluble chitosan-heparin complex, J. Appl. Polym. Sci., 2003, 87(11), 1784-1789.
269) Ray .S.C., Arindam .S, Jana .N.R., Rupa .S Fluorescent carbon nanoparticles: synthesis, characterisation,and bioimaging application, J. Phys. Chem. C., 2009, 11(3), 18546-18551.
270) Hwang .J.J., Yong .J.K., Jong .H.H., Masaka .H, Iijimo .S, Hirofumi .K, Yoong .A.K., Katsumi .K, Cheol .M.Y. Thermal-treatment-induced enhancement in effective surface area of single wall carbon nanohorns for supercapcitor application,J. Phys. Chem. C., 2013, 117, 25877-25883.
271) Shigenroi .U, Hiroaki .H, Yoshiyuki .H, Hirofumi .K, Kunimitsu .T, Hideki .S, Masahiko .A, Masako .Y,Sumio .I, Katusmi .K. Direct evidence on C-C single bonding in single wall carbon nanohorn aggregates, J. Phys. Chem. C., 2007,111,5572-5575.
272) Wang .Y.Q., Peter .M. Studies of carbon nanotube and fluorinated nanotube by X-ray and ultra-violet photoelectron spectroscopy, Chem. Mater.,2004, 16(25), 5427-5436.
273) Maxim .N.T., Warren .T.F., Giulio .L, Daniel E.R., Sivaram .A. Effect of mild nitric acid oxidation on dispersability, size, and structure of single wall carbon nanotube, Chem. Mater., 2007, 19, 5765-5772.
274) Jin .Z, Hongling .Z, Quan .Q, Yanlian .Y, Zhongfa .L,Xinyong .G, Zuliang .D. Effect of chemical oxidation on the structure of single wall carbn nanotube, J.Phys.Chem.B.,2003, 107,3712-3718.
275) Sasaki K.I., Sekine .Y, Tateno .K , Gotoh .H, Topological raman band in the carbon nanohorn, Phys.Rev. lett ., 2013, 111, 116801-116805.
276) Sachdev .A, Ishita .M, Uday Kumar .S, Bharat .B, Poornima .D, Gopinath .P. A novel one- step synthesis of PEG passivated multicolour fluorescent carbon dots for potential bio labeling application, RSC. Adv.,2013, 3(38), 16958-16961.
277) Shu .J.Y., Ming .W, Huan .C.C., Kuan .M.C., Yueh .C.Y. Brigh Fluorescent nanodiamonds: No photo bleaching and low cytotoxicity, J .Am. Chem. Soc., 2005, 127 17604-17605.
278) Neugar.F, Zappe .A, Jelezko .F, Tietz .C, Boudou .J.P., Krueger .A, Wrachtrup .J. Dynamics of diamond nanoparticles in solution and cells, Nano. Lett., 2007, 7(12), 3588-3591.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top