|
[1]J. M. Michael, A. Golshani, S. Gargac, and T. Goswami, “Biomechanics of the ankle joint and clinical outcomes of total ankle replacement,” J Mech Behav Biomed Mater, vol. 1, no. 4, pp. 276-94, Oct, 2008. [2]M. K. Steven, “Applications of UHMWPE in total ankle replacements Chapyer 11,” pp. 153-169, 2015. [3]C. W. Reb, J. E. McAlister, C. F. Hyer, and G. C. Berlet, “Posterior ankle structure injury during total ankle replacement,” J Foot Ankle Surg, vol. 55, no. 5, pp. 931-4, Sep-Oct, 2016. [4]Y. R. Kerkhoff, N. M. Kosse, and J. W. Louwerens, “Short term results of the mobility total ankle system: clinical and radiographic outcome,” Foot Ankle Surg, vol. 22, no. 3, pp. 152-7, Sep, 2016. [5]T. S. Roukis, and M. A. Prissel, “Reverse evans peroneus brevis medial ankle stabilization for balancing valgus ankle contracture during total ankle replacement,” J Foot Ankle Surg, vol. 53, no. 4, pp. 497-502, Jul-Aug, 2014. [6]M. A. Baldwin, C. W. Clary, C. K. Fitzpatrick, J. S. Deacy, L. P. Maletsky, and P. J. Rullkoetter, “Dynamic finite element knee simulation for evaluation of knee replacement mechanics,” J Biomech, vol. 45, no. 3, pp. 474-83, Feb 02, 2012. [7]M. Maestro, and B. Ferre, “Anatomie fonctionnelle du pied et de la cheville de l’adulte,” Revue du Rhumatisme Monographies, vol. 81, no. 2, pp. 61-70, 2014. [8]A. Leardini, J. J. O’Connor, and S. Giannini, “Biomechanics of the natural, arthritic, and replaced human ankle joint,” J Foot Ankle Surg, vol. 7, no. 8, 2014. [9]B. Reggiani, A. Leardini, F. Corazza, and M. Taylor, “Finite element analysis of a total ankle replacement during the stance phase of gait,” J Biomech, vol. 39, no. 8, pp. 1435-43, 2006. [10]J. T. M. Cheung, G. de Vrles, and B. M. Nigg, “Biomechanical effects of midfoot fusion - a finite element Study,” J Biomech, vol. 40, pp. S326, 2007. [11]J. T. Cheung, and M. Zhang, “Parametric design of pressure-relieving foot orthosis using statistics-based finite element method,” Med Eng Phys, vol. 30, no. 3, pp. 269-77, Apr, 2008. [12]J. P. Halloran, M. Ackermann, A. Erdemir, and A. J. van den Bogert, “Concurrent musculoskeletal dynamics and finite element analysis predicts altered gait patterns to reduce foot tissue loading,” J Biomech, vol. 43, no. 14, pp. 2810-5, Oct 19, 2010. [13]T. Ingrassia, L. Nalbone, V. Nigrelli, D. Tumino, and V. Ricotta, “Finite element analysis of two total knee joint prostheses,” International Journal on Interactive Design and Manufacturing (IJIDeM), vol. 7, no. 2, pp. 91-101, 2012. [14]L. Zach, S. Konvickova, and P. Ruzicka, “Finite element analysis of the lower extrtemity - hinge knee behavior under dynamic load,” 2013. [15]Mustafa Ozen , Onur Sayman , and Hasan Havitcloglu “Modeling and stress analyses of a normal foot-ankle and a prosthetic foot-ankle complex,” Acta Bioeng Biomech, vol. 15, no. 3, 2013. [16]B. Jay Elliot, D. Gundapaneni, and T. Goswami, “Finite element analysis of stress and wear characterization in total ankle replacements,” J Mech Behav Biomed Mater, vol. 34, pp. 134-45, Jun, 2014. [17]J. Guo, L. Wang, Z. Mo, W. Chen, and Y. Fan, “Biomechanical behavior of valgus foot in children with cerebral palsy: A comparative study,” J Biomech, vol. 48, no. 12, pp. 3170-7, Sep 18, 2015. [18]H. Vo, B. Tuvel, B. Nguyen, and T. Le, “Determination of the neutral axis in total ankle replacement,” Ifmbe Proc, vol. 46, pp. 121-124, 2015. [19]D. Wai-Chi Wong, Y. Wang, M. Zhang, and A. Kam-Lun Leung, “Functional restoration and risk of non-union of the first metatarsocuneiform arthrodesis for hallux valgus: A finite element approach,” J Biomech, vol. 48, no. 12, pp. 3142-8, Sep 18, 2015. [20]Y. Wang, Z. Li, D. W. Wong, and M. Zhang, “Effects of ankle arthrodesis on biomechanical performance of the entire foot,” PLoS One, vol. 10, no. 7, pp. e0134340, 2015. [21]C. S. Yuan, W. Chen, C. Chen, G. H. Yang, C. Hu, and K. L. Tang, “Effects on subtalar joint stress distribution after cannulated screw insertion at different positions and directions,” J Foot Ankle Surg, vol. 54, no. 5, pp. 920-6, Sep-Oct, 2015. [22]R. T. Anderson, D. J. Pacaccio, C. M. Yakacki, and R. D. Carpenter, “Finite element analysis of a pseudoelastic compression-generating intramedullary ankle arthrodesis nail,” J Mech Behav Biomed Mater, vol. 62, pp. 83-92, Sep, 2016. [23]J. Yu, D. W. Wong, H. Zhang, Z. P. Luo, and M. Zhang, “The influence of high-heeled shoes on strain and tension force of the anterior talofibular ligament and plantar fascia during balanced standing and walking,” Med Eng Phys, vol. 38, no. 10, pp. 1152-6, Oct, 2016. [24]Z. J. Zhu, Y. Zhu, J. F. Liu, Y. P. Wang, G. Chen, and X. Y. Xu, “Posterolateral ankle ligament injuries affect ankle stability: a finite element study,” BMC Musculoskelet Disord, vol. 17, pp. 96, Feb 24, 2016. [25]V. Filardi, and D. Milardi, “Experimental strain analysis on the entire bony leg compared with FE analysis,” J Orthop, vol. 14, no. 1, pp. 115-122, Mar, 2017. [26]F. Lintz, T. Barton, M. Millet, W. J. Harries, S. Hepple, and I. G. Winson, “Ground reaction force calcaneal offset: a new measurement of hindfoot alignment,” Foot Ankle Surg, vol. 18, no. 1, pp. 9-14, Mar, 2012. [27]A. P. Silva, D. D. Chagas, M. L. Cavaliere, S. Pinto, J. S. de Oliveira Barbosa, and L. A. Batista, “Kinematic analysis of subtalar eversion during gait in women with fibromyalgia,” Foot (Edinb), vol. 28, pp. 42-46, Aug, 2016. [28]G. M. Monaghan, W. H. Hsu, C. L. Lewis, E. Saltzman, J. Hamill, and K. G. Holt, “Forefoot angle at initial contact determines the amplitude of forefoot and rearfoot eversion during running,” Clin Biomech (Bristol, Avon), vol. 29, no. 8, pp. 936-42, Sep, 2014. [29]R. Wang, and E. M. Gutierrez-Farewik, “The effect of subtalar inversion/eversion on the dynamic function of the tibialis anterior, soleus, and gastrocnemius during the stance phase of gait,” Gait Posture, vol. 34, no. 1, pp. 29-35, May, 2011. [30]R. Kakkar, and M. S. Siddique, “Stresses in the ankle joint and total ankle replacement design,” Foot Ankle Surg, vol. 17, no. 2, pp. 58-63, Jun, 2011. [31]K. D. Button, F. Wei, and R. C. Haut, “Unlocking the talus by eversion limits medial ankle injury risk during external rotation,” J Biomech, vol. 48, no. 13, pp. 3724-7, Oct 15, 2015. [32]C. W. Imhauser, S. Siegler, J. K. Udupa, and J. R. Toy, “Subject-specific models of the hindfoot reveal a relationship between morphology and passive mechanical properties,” J Biomech, vol. 41, no. 6, pp. 1341-9, 2008. [33]L. Zach, L. Kuncicka, P. Ruzicka, and R. Kocich, “Design, analysis and verification of a knee joint oncological prosthesis finite element model,” Comput Biol Med, vol. 54, pp. 53-60, Nov, 2014. [34] G. Valente, L. Pitto, E. Schileo, S. Piroddi, A. Leardini, M. Manfrini, and F. Taddei, “Relationship between bone adaptation and in-vivo mechanical stimulus in biological reconstructions after bone tumor: A biomechanical modeling analysis,” Clin Biomech (Bristol, Avon), vol. 42, pp. 99-107, Feb, 2017. [35]P. K. Thain, G. T. Hughes, and A. C. Mitchell, “The effect of repetitive ankle perturbations on muscle reaction time and muscle activity,” J Electromyogr Kinesiol, vol. 30, pp. 184-90, Oct, 2016.
|