跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/13 10:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂彥承
研究生(外文):Yen-Cheng Lu
論文名稱:運用認知鷹架與模擬操作之實驗室密室脫逃遊戲之設計與評估:以化學滴定實驗為例
論文名稱(外文):The design and evaluation of an escape-room game integrating scaffolding and simulated operation: an example of chemistry titration experiment
指導教授:蔡今中蔡今中引用關係侯惠澤侯惠澤引用關係
指導教授(外文):Chin-Chung TsaiHuei-Tse Hou
口試委員:蔡今中侯惠澤王舒民
口試委員(外文):Chin-Chung TsaiHuei-Tse HouShu-Ming Wang
口試日期:2017-07-07
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:應用科技研究所
學門:自然科學學門
學類:其他自然科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:130
中文關鍵詞:遊戲式學習化學教學模擬操弄鷹架理論錨定式教學心流
外文關鍵詞:game-based learningchemistry teachingsimulated operationscaffoldinganchored instructionflow
相關次數:
  • 被引用被引用:4
  • 點閱點閱:757
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:4
在化學領域的學習中,實驗是非常重要的部分,然而,在實驗過程中,經常伴隨著可能的危險。因此,倘若能夠藉由遊戲機制結合化學概念學習,讓學習者在遊戲中模擬化學實驗操弄,便可降低實驗過程中的可能風險。本研究設計兩款結合故事情境和模擬操作的化學教育遊戲『搶救矣修斯©』以及『生生不息©』,運用認知鷹架引導搭配錨定式教學,將問題與線索嵌入情境之中,引導玩家探討遊戲中的化學知識,並在場景中的模擬操弄過程達成遊戲任務,輔助學習者學習酸鹼滴定或氧化還原滴定單元中的實驗操作、裝置選用與現象詮釋。藉由實徵評估,本研究之研究對象分別為64位和62位台灣北部某高中學生,探究學習者在遊戲過程中的學習成效、心流狀態與科技接受度。

研究結果發現,學習者除了在整體學習成效達到顯著進步外,學習者運用本遊戲學習後,還在現象詮釋、裝置選用與實驗操作的學習成效上也達顯著進步,並且具備高度的心流投入與科技接受度。此外,在「搶救矣修斯」部分,男性在心流前提子維度自我掌控感和心流經驗子維度失去自我意識上顯著高於女性;男性在整體科技接受度、認知有用性和認知易用性上顯著高於女性;高分組的學習者在心流整體、心流前提和心流前提子維度挑戰與技能的平衡、清楚的目標、知行合一以及科技接受度整體上皆顯著高於低分組。在「生生不息」部分,男性在科技接受度上之認知易用性顯著高於女性;高分組在心流整體、心流前提和心流前提子維度挑戰與技能的平衡、知行合一、心流經驗子維度失去時間感以及科技接受度整體、認知有用性上皆顯著高於低分組。

最後,本研究也初步分析學習成效、心流狀態與科技接受度各維度間彼此影響的關聯與路徑模式,並提出相關的研究與教學實務建議。
Experiment is an important part in chemistry learning, but it may also bring possible danger during the experiment. Therefore, if game mechanism and chemistry learning can be integrated for learners to operate experiments in a simulation game, possible risks in the experiment may be reduced. The study developed two chemistry educational games, “Saving Etheus©” and “Circle of Life©,” integrating story contexts and simulated operation. The games applied scaffolding and anchored instruction to guide the players to explore chemistry knowledge in the game based on the questions and clues embedded in the context. The students completed the missions in a simulated operation context to learn experiment operation, device selection, and phenomenon interpretation in the lesson of acid–base titration and redox titration. This empirical study recruited 64 and 62 senior high school students in northern Taiwan, aiming to explore their learning effectiveness, flow, and technology acceptance in the game.

The results suggested that the learners showed improvement in general learning effectiveness, including the performance of phenomenon interpretation, device selection, and experiment operation. They also showed high degree of flow and technology acceptance. Moreover, in “Saving Etheus,” males showed higher scores than females on sense of control, the sub-dimension of flow antecedent, and loss of self-consciousness, the sub-dimension of flow experience. Males also showed higher scores than females on technology acceptance, perceived usefulness, and perceived ease of use. High achievers showed higher scores than low achievers on technology acceptance, flow, flow antecedent, and its sub-dimensions, including balance between challenge and skill, a clear goal, and action-awareness merging. In “Circle of Life,” males showed higher scores than females on perceived ease of use in technology acceptance. High achievers showed higher scores than low achievers on flow, flow antecedent and its sub-dimensions of balance between challenge and skill and action-awareness merging, transformation of time, the sub-dimension of flow experience, technology acceptance, and perceived usefulness.

Last, the study also preliminarily analyzed the correlation and path model among learning effectiveness, flow, and dimensions of technology acceptance with suggestions for research and teaching.
摘要 I
Abstract II
致謝 IV
目錄 V
圖次 X
表次 XI
第壹章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與研究問題 4
第貳章 文獻探討 6
第一節 遊戲式學習 6
一、遊戲式學習 6
二、遊戲式學習輔助教學案例 7
第二節 化學教學 8
一、化學實驗教學 8
二、電腦輔助化學教學案例 9
第三節 模擬操弄 11
一、模擬操弄學習 11
二、模擬操弄輔助學習案例 12
第四節 鷹架理論 13
一、鷹架理論 13
二、鷹架理論輔助學習案例 14
第五節 錨定式教學 15
一、錨定式教學 15
二、錨定式教學輔助學習案例 16
第六節 小結 17
第参章 研究方法 18
A- 搶救矣修斯 18
第一節 研究設計 18
第二節 研究對象 18
第三節 研究工具 18
一、遊戲系統 19
(一) 設計理念 19
(二) 遊戲前導介面 22
(三) 遊戲操作介面 24
(四) 系統簡介與操作流程 26
二、參與遊戲同意書、基本資料問卷與遊戲經驗問卷 27
三、學習成效評量(前後測) 28
四、心流問卷 29
五、科技接受度問卷 31
第四節 研究程序 31
第五節 資料蒐集與分析 32
B- 生生不息 34
第一節 研究設計 34
第二節 研究對象 34
第三節 研究工具 34
一、遊戲系統 35
(一) 設計理念 35
(二) 遊戲前導介面 38
(三) 遊戲操作介面 40
(四) 系統簡介與操作流程 42
二、參與遊戲同意書、基本資料問卷與遊戲經驗問卷 43
三、學習成效評量(前後測) 44
四、心流問卷 46
五、科技接受度問卷 48
第四節 研究程序 48
第五節 資料蒐集與分析 49
第肆章 研究結果 51
A- 搶救矣修斯 51
第一節 高中生對「搶救矣修斯」整體學習成效、心流程度、科技接受度 51
一、整體學習成效 51
二、開放性問題、實驗裝置名稱和程序性知識三構面之學習成效 52
三、心流狀態 53
四、科技接受度 54
第二節 不同性別的學習者在學習成效、心流狀態與科技接受度的差異 56
第三節 高低學習成效組學習者在學習成效、心流狀態與科技接受度差異 58
第四節 相關與路徑分析 60
一、相關分析 60
二、路徑分析 61
B- 生生不息 64
第一節 高中生對「生生不息」之整體學習成效、心流程度、科技接受度 64
一、整體學習成效 64
二、開放性問題、實驗裝置名稱和程序性知識三構面之學習成效 65
三、心流狀態 66
四、科技接受度 67
第二節 不同性別的學習者在學習成效、心流狀態與科技接受度的差異 69
第三節 高低學習成效組學習者在學習成效、心流狀態與科技接受度差異 71
第四節 相關與路徑分析 73
一、相關分析 73
二、路徑分析 74
第伍章 討論 77
第一節 高中生對於「搶救矣修斯」與「生生不息」之整體學習成效、心流狀態與科技接受度 77
第二節 不同性別的學習者在學習成效、心流狀態與科技接受度的差異 79
第三節 高低學習成效組學習者在學習成效、心流狀態與科技接受度差異 80
第四節 學習者在「搶救矣修斯」與「生生不息」中的學習成效、心流狀態、科技接受度各個要素間之關聯與路徑 81
第陸章 結論與建議 83
第一節 結論 83
第二節 建議 86
一、遊戲系統發展方面 86
二、教學實務用方面 87
三、未來研究上的建議 88
(一) 行為模式分析 88
(二) 實驗組與控制組 88
參考文獻 89
附錄一 :酸鹼滴定實驗步驟 97
附錄二 :參與遊戲同意書(搶救矣修斯) 99
附錄三 :基本資料問卷(搶救矣修斯) 100
附錄四 :遊戲經驗問卷(搶救矣修斯) 101
附錄五 :學習成效評量(搶救矣修斯) 102
附錄六 :心流問卷量表(搶救矣修斯) 104
附錄七 :科技接受度量表(搶救矣修斯) 105
附錄八 :氧化還原滴定實驗步驟 106
附錄九 :參與遊戲同意書(生生不息) 108
附錄十 :基本資料問卷(生生不息) 109
附錄十一 :遊戲經驗問卷(生生不息) 110
附錄十二 :學習成效評量(生生不息) 111
附錄十三 :心流問卷量表(生生不息) 114
附錄十四 :科技接受度量表(生生不息) 115
侯惠澤、周逸璇、陳昊暐(2014)。運用迷你解謎遊戲於翻轉教室:“微翻轉遊戲式學習活動”之模式與教育遊戲編輯環境XML-based ER Game Maker©之建置,2014台灣數位學習發展研討會, 2014/11/13-14, TWELF 2014, 台北。
呂彥承、侯惠澤、王嘉萍(2017)。搶救矣修斯©-設計密室逃脫遊戲輔助化學酸鹼滴定之現象解釋與實驗操弄學習,第十二屆台灣數位學習發展研討會,2017/03/16-17,TWELF 2017,桃園。
陳昊暐、李明娟、王嘉萍、余采芳、侯惠澤(2015)。銅病相連©-運用密室逃脫遊戲輔助化學氧化還原概念學習,第19屆全球華人計算機教育應用大會,2015/05/25-29,GCCCE 2015,台北。
林映辰(2016)。結合擴增實境、錨定式情境與虛擬實驗室之化學實驗室教學遊戲的發展與評估: 成效、心流與行為之分析,國立臺灣科技大學應用科技研究所,未出版碩士論文,台北市。
顏嘉慰(2016)。結合虛擬實境情境學習與多元鷹架之有機化學教學遊戲的發展與評估: 成效、心流與行為之分析,國立臺灣科技大學應用科技研究所,未出版碩士論文,台北市。
Alessi, S. M., & Trollip, S. R. (2001). Multimedia for learning. Methods and development, 3rd edition. Boston: Allyn & Bacon.
All, A., Plovie, B., Castellar, E. P. N., & Van Looy, J. (2017). Pre-test influences on the effectiveness of digital-game based learning: A case study of a fire safety game. Computers & Education.
Arnab, S., Brown, K., Clarke, S., Dunwell, I., Lim, T., Suttie, N., ... & De Freitas, S. (2013). The development approach of a pedagogically-driven serious game to support Relationship and Sex Education (RSE) within a classroom setting. Computers & Education, 69, 15-30.
Barab, S. A., Scott, B., Siyahhan, S., Goldstone, R., Ingram-Goble, A., Zuiker, S. J., et al. (2009). Transformational play as a curricular scaffold: Using videogames to support science education. Journal of Science Education and Technology, 18(4), 305-320.
Barab, S., & Dede, C. (2007). Games and immersive participatory simulations for science education: an emerging type of curricula. Journal of Science Education and Technology, 16(1), 1-3.
Barzilai, S., & Blau, I. (2014). Scaffolding game-based learning: Impact on learning achievements, perceived learning, and game experiences. Computers & Education, 70, 65-79.
Berkow, S., Virkstis, K., Stewart, J., & Conway, L. (2009). Assessing new graduate nurse performance. Nurse educator, 34(1), 17-22.
Bourgonjon, J., Valcke, M., Soetaert, R., & Schellens, T. (2010). Students’ perceptions about the use of video games in the classroom. Computers & Education, 54(4), 1145-1156.
Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32-42.
Buffum, P. S., Frankosky, M., Boyer, K. E., Wiebe, E. N., Mott, B. W., & Lester, J. C. (2016). Collaboration and Gender Equity in Game-Based Learning for Middle School Computer Science. Computing in Science & Engineering, 18(2), 18-28.
Crujeiras, B., & Jiménez-Aleixandre, M. P. (2013). Challenges in the implementation of a competency-based curriculum in Spain. Thinking Skills and Creativity, 10, 208-220.
CTGV. (1990). Anchored Instruction and Its Relationship to Situated Cognition. Educational Researcher, 19(6), 2-10.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 13(3), 319-340.
Dede, C. (2009). Immersive interfaces for engagement and learning. Science, 323(5910), 66-69.
De Freitas, S., Rebolledo‐Mendez, G., Liarokapis, F., Magoulas, G., & Poulovassilis, A. (2010). Learning as immersive experiences: Using the four‐dimensional framework for designing and evaluating immersive learning experiences in a virtual world. British Journal of Educational Technology, 41(1), 69-85.
De La Harpe, B., & Radloff, A. (2000). Helping academic staff to integrate professional skills. Integrating key skills in higher education. London: Kogan Page, 165-179.
Dewey, J. (1910). How we think. Mineola. New York: Dover Publications, Inc., Mineola, NY.
Dubovi, I., Levy, S. T., & Dagan, E. (2017). Now I know how! The learning process of medication administration among nursing students with non-immersive desktop virtual reality simulation. Computers & Education.
Ebner, M., & Holzinger, A. (2007). Successful implementation of user-centered game based learning in higher education: An example from civil engineering. Computers & Education, 49(3), 873-890.
Elcin, M., & Sezer, B. (2014). An Exploratory Comparison of Traditional Classroom Instruction and Anchored Instruction with Secondary School Students: Turkish Experience. Eurasia Journal of Mathematics, Science & Technology Education, 10(6), 523-530.
Garris, R., Ahlers, R., & Driskell, J. E. (2002). Games, motivation, and learning: A research and practice model. Simulation & gaming, 33(4), 441-467.
Girault, I., & d’Ham, C. (2014). Scaffolding a Complex Task of Experimental Design in Chemistry with a Computer Environment. Journal of Science Education and Technology, 23(4), 514-526.
Graves, M. F., & Braaten, S. (1996). Scaffolded Reading Experiences for Inclusive Classes. Educational Leadership, 53(5), 14-16.
Guardiola, J., & Guillen-Royo, M. (2015). Income, unemployment, higher education and wellbeing in times of economic crisis: Evidence from Granada (Spain). Social Indicators Research, 120(2), 395-409.
Gunbas, N. (2015). Students' mathematics word problem‐solving achievement in a computer‐based story. Journal of Computer Assisted Learning, 31(1), 78-95.
Hainey, T., Connolly, T. M., Stansfield, M., & Boyle, E. A. (2011). Evaluation of a game to teach requirements collection and analysis in software engineering at tertiary education level. Computers & Education, 56(1), 21-35.
Hayden, J. K., Smiley, R. A., Alexander, M., & Kardong-Edgren, S. R. Jeffries, P.(2014). The NCSBN National Simulation Study: A Longitudinal, Randomized, Controlled Study Replacing Clinical Hours with Simulation in Prelicensure Nursing Education. Journal of Nursing Regulation, 5(2).
Hmelo-Silver, C. E., & Azevedo, R. (2006). Understanding complex systems: Some core challenges. The Journal of the learning sciences, 15(1), 53-61.
Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty‐first century. Science education, 88(1), 28-54.
Hou, H. T. (2012). Exploring the behavioral patterns of learners in an educational massively multiple online role-playing game (MMORPG). Computers & Education, 58(4), 1225-1233.
Hou, H. T., & Chou, Y. S. (2012). Exploring the technology acceptance and flow state of a chamber escape game-Escape The Lab© for learning electromagnet concept. Poster Presented at the 20thInternational Conference on Computers in Education (ICCE2012), Singapore, November 26-30, 2012.
Hou, H. T. (2013). Analyzing the behavioral differences between students of different genders, prior knowledge and learning performance with an educational MMORPG: A longitudinal case study in an elementary school. British Journal of Educational Technology, 44(3), E85-E89, May 2013.
Hou, H. T., Lu, Y. C., & Chen, K. T. (2016). Aboriginal Adventure©-the development and evaluation of an educational game that integrates cognitive-scaffolding and escape-room game mechanism for aboriginal culture teaching. Poster Presented at the Asian Conference on Society, Education & Technology 2016 (ACSET2016), Japan, October 20-23, 2016.
Hou, H. T., Wu, Y. S., & Chou, Y. S. (2014). How technology acceptance affects flow antecedent and flow experience in a simulation-based science education game: A preliminary path analysis. Paper presented at the Global Chinese Conference on Computers in Education (GCCCE 2014), May 26-30, 2014, Shanghai, China.
Hsiao, H. S., & Chen, J. C. (2016). Using a gesture interactive game-based learning approach to improve preschool children's learning performance and motor skills. Computers & Education, 95, 151-162.
Hwang, G. J., Hsu, T. C., Lai, C. L., & Hsueh, C. J. (2017). Interaction of problem-based gaming and learning anxiety in language students' English listening performance and progressive behavioral patterns. Computers & Education, 106, 26-42.
Kapp, K. M. (2012). The gamification of learning and instruction: game-based methods and strategies for training and education. John Wiley & Sons.
Ke, F., & Carafano, P. (2016). Collaborative science learning in an immersive flight simulation. Computers & Education, 103, 114-123.
Kiili, K. (2006). Evaluations of an experiential gaming model. Human Technology, An Interdisciplinary Journal on Humans in ICT Environments, 2(2), 187-201.
Limniou, M., Papadopoulos, N., & Whitehead, C. (2009). Integration of simulation into pre-laboratory chemical course: Computer cluster versus WebCT. Computers & Education, 52(1), 45-52.
Lin, Y. L., & Tu, Y. Z. (2012). The values of college students in business simulation game: A means-end chain approach. Computers & Education, 58(4), 1160-1170.
Liu, D., Valdiviezo-Díaz, P., Riofrio, G., Sun, Y. M., & Barba, R. (2015). Integration of Virtual Labs into Science E-learning. Procedia Computer Science, 75, 95-102.
Liu, T. Y., & Chu, Y. L. (2010). Using ubiquitous games in an English listening and speaking course: Impact on learning outcomes and motivation. Computers & Education, 55(2), 630-643.
Ma, J., & Nickerson, J. V. (2006). Hands-on, simulated, and remote laboratories: A comparative literature review. ACM Computing Surveys (CSUR), 38(3), 7.
Pasin, F., & Giroux, H. (2011). The impact of a simulation game on operations management education. Computers & Education, 57(1), 1240-1254.
Péladeau, N., Forget, J., & Gagné, F. (2003). Effect of paced and unpaced practice on skill application and retention: How much is enough? American Educational Research Journal, 40(3), 769-801.
Prensky, M. (2001). Digital Game-Based Learning. New York: McGraw-Hill.
Prensky, M. (2001). Fun, play and games: What makes games engaging. Digital game-based learning, 5, 1-05.
Prensky, M. (2007). Digital Game-Based Learning. New York: McGraw-Hill.
Raes, A., Schellens, T., De Wever, B., & Vanderhoven, E. (2012). Scaffolding information problem solving in web-based collaborative inquiry learning. Computers & Education, 59(1), 82-94.
Raybourn, E. M., & Bos, N. (2005, April). Design and evaluation challenges of serious games. In CHI'05 extended abstracts on Human factors in computing systems, 2049-2050. ACM.
Redel-Macías, M. D., Pinzi, S., Martínez-Jiménez, M. P., Dorado, G., & Dorado, M. P. (2016). Virtual laboratory on biomass for energy generation. Journal of Cleaner Production, 112, 3842-3851.
Ritterfeld, U., Weber, R., Fernandes, S., & Vorderer, P. (2004). Think science!: entertainment education in interactive theaters. Computers in Entertainment (CIE), 2(1), 11-11.
Rogoff, B. (2009). Apprenticeship in thinking: Cognitive development in social context. Korean J Med Educ, 21(2), 197-198.
Rosas, R., Nussbaum, M., Cumsille, P., Marianov, V., Correa, M., Flores, P., ... & Rodriguez, P. (2003). Beyond Nintendo: design and assessment of educational video games for first and second grade students. Computers & Education, 40(1), 71-94.
Rosenshine, B., & Meister, C. (1992). The use of scaffolds for teaching higher-level cognitive strategies. Educational leadership, 49(7), 26-33. Rosenshine, B., & Meister, C. (1992). The use of scaffolds for teaching higher-level cognitive strategies. Educational leadership, 49(7), 26-33.
Shudayfat, E., Moldoveanu, F., & Moldoveanu, A. (2012). A 3D virtual learning environment for teaching chemistry in high school. In Annals of DAAAM for 2012 & Proceedings of the 23rd International DAAAM Symposium, 23(1), 2304-1382.
Shyu, H. Y. C. (2000). Using video‐based anchored instruction to enhance learning: Taiwan's experience. British Journal of Educational Technology, 31(1), 57-69.
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological functions. Harvard, Cambridge, MA.
Wilson, K. (2016). Critical reading, critical thinking: Delicate scaffolding in English for Academic Purposes (EAP). Thinking Skills and Creativity, 22, 256-265.
Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of child psychology and psychiatry, 17(2), 89-100.
Wood, D., & Wood, H. (1996). Vygotsky, tutoring and learning. Oxford review of Education, 22(1), 5-16.
Wood, P., Bruner, J., & Ross, G. (1976). The role of tutoring in problem solving. Journal of child psychology and psychiatry, 17, 89-100.
Yang, Y. T. C. (2015). Virtual CEOs: A blended approach to digital gaming for enhancing higher order thinking and academic achievement among vocational high school students. Computers & Education, 81, 281-295.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 結合擴增實境、錨定式情境與虛擬實驗室之化學實驗室教學遊戲的發展與評估: 成效、心流與行為之分析
2. 結合虛擬實境情境學習與多元鷹架之有機化學教學遊戲的發展與評估: 成效、心流與行為之分析
3. 結合問題解決與情境故事的角色扮演歷史教學遊戲的發展與評估:玩家接受度、心流、學習成效以及地方感之分析
4. 以鷹架引導為基礎的遊戲式學習之學習成效研究-以國小六年級體積課程為例
5. 整合認知鷹架與角色扮演策略之高中數學教學遊戲之發展與心流、後設認知及學習成效評估
6. 結合認知學習理論之化學教育桌遊:心流分析與材質評估
7. 不同性別對數位英語字彙學習遊戲鷹架輔助工具使用行為差異之研究
8. 結合3D模擬操弄與角色扮演策略之化學教學遊戲的發展與評估:科技接受度、心流、方向感之分析
9. 結合角色扮演與問題解決策略之模擬化學實驗教學遊戲之發展與評估:心流、科技接受度與學習歷程分析
10. 整合情境學習與認知鷹架之歷史科戰略遊戲式測驗環境之發展與評估:接受度、心流、學習成效與歷程之分析
11. 遊戲式學習之專注放鬆與挑戰技能平衡分析
12. 結合角色扮演策略與模擬情境的高中電磁鐵數位教學遊戲之發展與評估
13. 藉由多人線上角色扮演遊戲學習合作技能
14. 利用遊戲式學習法提升國高中生學習網路的興趣
15. 客製化虛擬化身對遊戲式學習之影響:存在感與心流經驗
 
無相關期刊
 
1. 運用合作問題解決與鷹架教學策略之擴增實境科學史教育桌遊之設計與評估
2. 結合擴增實境、錨定式情境與虛擬實驗室之化學實驗室教學遊戲的發展與評估: 成效、心流與行為之分析
3. 結合虛擬實境情境學習與多元鷹架之有機化學教學遊戲的發展與評估: 成效、心流與行為之分析
4. 整合情境學習與認知鷹架之歷史科戰略遊戲式測驗環境之發展與評估:接受度、心流、學習成效與歷程之分析
5. 整合角色扮演策略、網路語音通訊與社群軟體促進英文寫作與口語技巧
6. 結合情境脈絡線索作為認知鷹架的擴增實境國中生物科桌上遊戲的學習成效與行為模式分析
7. 結合認知學習理論之化學教育桌遊:心流分析與材質評估
8. 整合提問與引導鷹架之網路模擬與社交環境對合作問題解決表現之影響
9. 運用多重表徵與認知鷹架的國中數學科擴增實境桌上遊戲的學習成效與歷程分析
10. 整合認知鷹架與角色扮演策略之高中數學教學遊戲之發展與心流、後設認知及學習成效評估
11. 結合情境學習與鷹架引導的擴增實境博物館卡片解謎實境遊戲之設計與評估
12. 整合線上搜尋與桌上遊戲之歷史教學活動之發展與評估:學習成效、心流、動機與焦慮之分析
13. 結合多維度鷹架與情境學習機制的歷史街景探索遊戲教學活動的設計與評估
14. 整合多重表徵鷹架與心智工具的遠距同步遊戲化數學教學活動的設計與評估
15. 擴增實境教育遊戲編輯工具之發展與評估:運用於高中化學科之學習成效與行為分析