|
1. Tanaka, T., Collapse of gels and the critical endpoint. Physical Review Letters, 1978. 40(12): p. 820. 2. Yatvin, M.B., et al., Design of liposomes for enhanced local release of drugs by hyperthermia. Science, 1978. 202(4374): p. 1290-1293. 3. Mura, S., J. Nicolas, and P. Couvreur, Stimuli-responsive nanocarriers for drug delivery. Nature materials, 2013. 12(11): p. 991-1003. 4. Kelley, E.G., et al., Stimuli-responsive copolymer solution and surface assemblies for biomedical applications. Chemical Society Reviews, 2013. 42(17): p. 7057-7071. 5. Liu, J., et al., pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnology advances, 2014. 32(4): p. 693-710. 6. Ganesh, V.A., A. Baji, and S. Ramakrishna, Smart functional polymers–a new route towards creating a sustainable environment. RSC Advances, 2014. 4(95): p. 53352-53364. 7. Gao, W., J.M. Chan, and O.C. Farokhzad, pH-responsive nanoparticles for drug delivery. Molecular pharmaceutics, 2010. 7(6): p. 1913-1920. 8. Yu, P., et al., Reversal of doxorubicin resistance in breast cancer by mitochondria-targeted pH-responsive micelles. Acta biomaterialia, 2015. 14: p. 115-124. 9. Stubbs, M., et al., Causes and consequences of tumour acidity and implications for treatment. Molecular medicine today, 2000. 6(1): p. 15-19. 10. Neri, D. and C.T. Supuran, Interfering with pH regulation in tumours as a therapeutic strategy. Nature reviews Drug discovery, 2011. 10(10): p. 767-777. 11. Lee, E.S., et al., Tumor pH-responsive flower-like micelles of poly (L-lactic acid)-b-poly (ethylene glycol)-b-poly (L-histidine). Journal of Controlled Release, 2007. 123(1): p. 19-26. 12. Cheng, R., et al., Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials, 2013. 34(14): p. 3647-3657. 13. Pan, Y.-J., et al., Redox/pH dual stimuli-responsive biodegradable nanohydrogels with varying responses to dithiothreitol and glutathione for controlled drug release. Biomaterials, 2012. 33(27): p. 6570-6579. 14. Chen, W., et al., Redox and pH-responsive degradable micelles for dually activated intracellular anticancer drug release. Journal of controlled release, 2013. 169(3): p. 171-179. 15. Huo, M., et al., Redox-responsive polymers for drug delivery: from molecular design to applications. Polymer Chemistry, 2014. 5(5): p. 1519-1528. 66 16. Wang, J., et al., Tumor Redox Heterogeneity‐Responsive Prodrug Nanocapsules for Cancer Chemotherapy. Advanced Materials, 2013. 25(27): p. 3670-3676. 17. Torchilin, V.P., Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nature reviews Drug discovery, 2014. 13(11): p. 813-827. 18. Wilson, D.S., et al., Orally delivered thioketal nanoparticles loaded with TNF-α– siRNA target inflammation and inhibit gene expression in the intestines. Nature materials, 2010. 9(11): p. 923-928. 19. Nguyen, M.M., et al., Enzyme‐Responsive Nanoparticles for Targeted Accumulation and Prolonged Retention in Heart Tissue after Myocardial Infarction. Advanced Materials, 2015. 27(37): p. 5547-5552. 20. Callmann, C.E., et al., Therapeutic Enzyme‐Responsive Nanoparticles for Targeted Delivery and Accumulation in Tumors. Advanced Materials, 2015. 27(31): p. 4611-4615. 21. De La Rica, R., D. Aili, and M.M. Stevens, Enzyme-responsive nanoparticles for drug release and diagnostics. Advanced drug delivery reviews, 2012. 64(11): p. 967-978. 22. Lock, L.L., et al., Enzyme-specific doxorubicin drug beacon as drug-resistant theranostic molecular probes. ACS Macro Letters, 2015. 4(5): p. 552-555. 23. Shi, Y., et al., Reversible Addition–Fragmentation Chain Transfer Synthesis of a Micelle-Forming, Structure Reversible Thermosensitive Diblock Copolymer Based on the N-(2-Hydroxy propyl) Methacrylamide Backbone. ACS Macro Letters, 2013. 2(5): p. 403-408. 24. Shi, Y., et al., Π–Π stacking increases the stability and loading capacity of thermosensitive polymeric micelles for chemotherapeutic drugs. Biomacromolecules, 2013. 14(6): p. 1826-1837. 25. Shi, Y., et al., Anthracene functionalized thermosensitive and UV-crosslinkable polymeric micelles. Polymer Chemistry, 2015. 6(11): p. 2048-2053. 26. Danhier, F., O. Feron, and V. Préat, To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. Journal of Controlled Release, 2010. 148(2): p. 135-146. 27. Adelsberger, J., et al., Thermoresponsive PS-b-PNIPAM-b-PS micelles: aggregation behavior, segmental dynamics, and thermal response. Macromolecules, 2010. 43(5): p. 2490-2501. 28. Zhao, Y., et al., PEGylated thermo-sensitive poly (amidoamine) dendritic drug delivery systems. International journal of pharmaceutics, 2011. 409(1): p. 229-236. 29. Lal, S., S.E. Clare, and N.J. Halas, Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Accounts of chemical research, 2008. 41(12): p. 1842-1851. 67 30. Sun, J., et al., Fibrous Aggregation of Magnetite Nanoparticles Induced by a Time‐ Varied Magnetic Field. Angewandte Chemie International Edition, 2007. 46(25): p. 4767-4770. 31. Liu, J., et al., Magnetically sensitive alginate-templated polyelectrolyte multilayer microcapsules for controlled release of doxorubicin. The Journal of Physical Chemistry C, 2010. 114(17): p. 7673-7679. 32. Chen, Z., et al., Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. Acs Nano, 2012. 6(5): p. 4001-4012. 33. Fang, K., et al., Magnetic field activated drug release system based on magnetic PLGA microspheres for chemo-thermal therapy. Colloids and Surfaces B: Biointerfaces, 2015. 136: p. 712-720. 34. Yang, F., et al., Controlled Drug Release and Hydrolysis Mechanism of Polymer– Magnetic Nanoparticle Composite. ACS applied materials & interfaces, 2015. 7(18): p. 9410-9419. 35. Hu, K., et al., A novel magnetic hydrogel with aligned magnetic colloidal assemblies showing controllable enhancement of magnetothermal effect in the presence of alternating magnetic field. Advanced Materials, 2015. 27(15): p. 2507-2514. 36. Wang, F., et al., Diffusion and clearance of superparamagnetic iron oxide nanoparticles infused into the rat striatum studied by MRI and histochemical techniques. Nanotechnology, 2010. 22(1): p. 015103. 37. Yue-Jian, C., et al., Synthesis, self-assembly, and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent. Drug Development and Industrial Pharmacy, 2010. 36(10): p. 1235-1244. 38. Xie, J., et al., High-performance PEGylated Mn–Zn ferrite nanocrystals as a passive-targeted agent for magnetically induced cancer theranostics. Biomaterials, 2014. 35(33): p. 9126-9136. 39. Xiong, F., et al., Rubik-like magnetic nanoassemblies as an efficient drug multifunctional carrier for cancer theranostics. Journal of Controlled Release, 2013. 172(3): p. 993-1001. 40. Song, L., et al., Effective PEGylation of Fe3O4 nanomicelles for in vivo MR imaging. Journal of nanoscience and nanotechnology, 2015. 15(6): p. 4111-4118. 41. Liu, D., et al., Conjugation of paclitaxel to iron oxide nanoparticles for tumor imaging and therapy. Nanoscale, 2012. 4(7): p. 2306-2310. 42. Yang, H.-W., et al., Self-protecting core-shell magnetic nanoparticles for targeted, traceable, long half-life delivery of BCNU to gliomas. Biomaterials, 2011. 32(27): p. 6523-6532. 68 43. Hayashi, K., et al., Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics, 2013. 3(6): p. 366-376. 44. Paris, J.L., et al., Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS nano, 2015. 9(11): p. 11023-11033. 45. Guo, Q., et al., Block versus random amphiphilic glycopolymer nanopaticles as glucose-responsive vehicles. Biomacromolecules, 2015. 16(10): p. 3345-3356. 46. Wu, Q., et al., Organization of glucose-responsive systems and their properties. Chemical reviews, 2011. 111(12): p. 7855-7875. 47. Gu, Z., et al., Injectable nano-network for glucose-mediated insulin delivery. ACS nano, 2013. 7(5): p. 4194-4201. 48. Murdan, S., Electro-responsive drug delivery from hydrogels. Journal of controlled release, 2003. 92(1): p. 1-17. 49. Yun, J., et al., Electro-responsive transdermal drug delivery behavior of PVA/PAA/MWCNT nanofibers. European Polymer Journal, 2011. 47(10): p. 1893-1902. 50. Ying, X., et al., Angiopep‐Conjugated Electro‐Responsive Hydrogel Nanoparticles: Therapeutic Potential for Epilepsy. Angewandte Chemie International Edition, 2014. 53(46): p. 12436-12440. 51. Curcio, M., et al., On demand delivery of ionic drugs from electro-responsive CNT hybrid films. RSC Advances, 2015. 5(56): p. 44902-44911. 52. Schmaljohann, D., Thermo-and pH-responsive polymers in drug delivery. Advanced drug delivery reviews, 2006. 58(15): p. 1655-1670. 53. Zhang, L., et al., Thermo and pH dual‐responsive nanoparticles for anti‐cancer drug delivery. Advanced Materials, 2007. 19(19): p. 2988-2992. 54. Zhang, Z., J. Wang, and C. Chen, Near‐Infrared Light‐Mediated Nanoplatforms for Cancer Thermo‐Chemotherapy and Optical Imaging. Advanced Materials, 2013. 25(28): p. 3869-3880. 55. Jochum, F.D. and P. Theato, Thermo-and light responsive micellation of azobenzene containing block copolymers. Chemical Communications, 2010. 46(36): p. 6717-6719. 56. Yang, F., et al., Bubble microreactors triggered by an alternating magnetic field as diagnostic and therapeutic delivery devices. small, 2010. 6(12): p. 1300-1305. 57. Yang, F., et al., A Hydrogen Peroxide‐Responsive O2 Nanogenerator for Ultrasound and Magnetic‐Resonance Dual Modality Imaging. Advanced Materials, 2012. 24(38): p. 5205-5211. 69 58. Yang, F., et al., Controlled release of Fe3O4 nanoparticles in encapsulated microbubbles to tumor cells via sonoporation and associated cellular bioeffects. Small, 2011. 7(7): p. 902-910. 59. Yang, F., et al., Altering the response of intracellular reactive oxygen to magnetic nanoparticles using ultrasound and microbubbles. Science China Materials, 2015. 58(6): p. 467-480. 60. Cai, X., F. Yang, and N. Gu, Applications of magnetic microbubbles for theranostics. Theranostics, 2012. 2(1): p. 103-112. 61. Delcea, M., H. Möhwald, and A.G. Skirtach, Stimuli-responsive LbL capsules and nanoshells for drug delivery. Advanced drug delivery reviews, 2011. 63(9): p. 730-747. 62. Stuart, M.A.C., et al., Emerging applications of stimuli-responsive polymer materials. Nature materials, 2010. 9(2): p. 101-113. 63. Wilson, J. and A. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Advances in Physics, 1969. 18(73): p. 193-335. 64. Bednorz, J.G. and K.A. Müller, Possible high T c superconductivity in the Ba—La—Cu—O system, in Ten Years of Superconductivity: 1980–1990. 1986, Springer. p. 267-271. 65. Kamihara, Y., et al., Iron-based layered superconductor: LaOFeP. Journal of the American Chemical Society, 2006. 128(31): p. 10012-10013. 66. May, J.W., Platinum surface LEED rings. Surface Science, 1969. 17(1): p. 267-270. 67. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669. 68. Stankovich, S., et al., Graphene-based composite materials. nature, 2006. 442(7100): p. 282-286. 69. Kim, K.S., et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. nature, 2009. 457(7230): p. 706-710. 70. Yang, H., et al., Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science, 2012. 336(6085): p. 1140-1143. 71. Frindt, R., Single crystals of MoS2 several molecular layers thick. Journal of Applied Physics, 1966. 37(4): p. 1928-1929. 72. Joensen, P., R. Frindt, and S.R. Morrison, Single-layer MoS2. Materials research bulletin, 1986. 21(4): p. 457-461. 73. Goli, P., et al., Charge density waves in exfoliated films of van der Waals materials: evolution of Raman spectrum in TiSe2. Nano letters, 2012. 12(11): p. 5941-5945. 74. Dang, W., et al., Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene. Nano letters, 2010. 10(8): p. 2870-2876. 70 75. Vogg, G., M. Brandt, and M. Stutzmann, Polygermyne—a prototype system for layered germanium polymers. Advanced Materials, 2000. 12(17): p. 1278-1281. 76. Chernozatonskii, L.A., B.N. Mavrin, and P.B. Sorokin, Determination of ultrathin diamond films by Raman spectroscopy. physica status solidi (b), 2012. 249(8): p. 1550-1554. 77. Naguib, M., et al., Two‐Dimensional Nanocrystals: Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 (Adv. Mater. 37/2011). Advanced Materials, 2011. 23(37): p. 4207-4207. 78. Kawamura, F., H. Yusa, and T. Taniguchi, Synthesis of rhenium nitride crystals with MoS2 structure. Applied Physics Letters, 2012. 100(25): p. 251910. 79. Tulsky, E.G. and J.R. Long, Dimensional reduction: a practical formalism for manipulating solid structures. Chemistry of Materials, 2001. 13(4): p. 1149-1166. 80. Wen, J.Y. and G.L. Wilkes, Organic/inorganic hybrid network materials by the sol-gel approach. Chemistry of Materials, 1996. 8(8): p. 1667-1681. 81. Schaak, R.E. and T.E. Mallouk, Prying apart Ruddlesden− Popper phases: Exfoliation into sheets and nanotubes for assembly of perovskite thin films. Chemistry of materials, 2000. 12(11): p. 3427-3434. 82. Tanaka, T., et al., Oversized titania nanosheet crystallites derived from flux-grown layered titanate single crystals. Chemistry of materials, 2003. 15(18): p. 3564-3568. 83. Ida, S., et al., Synthesis of hexagonal nickel hydroxide nanosheets by exfoliation of layered nickel hydroxide intercalated with dodecyl sulfate ions. Journal of the American Chemical Society, 2008. 130(43): p. 14038-14039. 84. Vogt, P., et al., Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Physical review letters, 2012. 108(15): p. 155501. 85. Ruggiero, C., et al., Emergence of surface states in nanoscale Cu 2 N islands. Physical Review B, 2011. 83(24): p. 245430. 86. Heinrich, A., et al., Single-atom spin-flip spectroscopy. Science, 2004. 306(5695): p. 466-469. 87. Olsson, F.E., et al., Multiple charge states of Ag atoms on ultrathin NaCl films. Physical review letters, 2007. 98(17): p. 176803. 88. Sterrer, M., et al., Control of the charge state of metal atoms on thin MgO films. Physical review letters, 2007. 98(9): p. 096107. 89. Potapenko, D.V., J. Hrbek, and R.M. Osgood, Scanning tunneling microscopy study of titanium oxide nanocrystals prepared on Au (111) by reactive-layer-assisted deposition. ACS nano, 2008. 2(7): p. 1353-1362. 90. Peng, Y., et al., Hydrothermal synthesis and characterization of single-molecular-layer MoS2 and MoSe2. Chemistry Letters, 2001. 30(8): p. 772-773. 71 91. Feng, J., et al., Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Advanced materials, 2012. 24(15): p. 1969-1974. 92. Cui, Y., et al., Diameter-controlled synthesis of single-crystal silicon nanowires. Applied Physics Letters, 2001. 78(15): p. 2214-2216. 93. Kong, J., A.M. Cassell, and H. Dai, Chemical vapor deposition of methane for single-walled carbon nanotubes. Chemical Physics Letters, 1998. 292(4): p. 567-574. 94. Li, X., et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009. 324(5932): p. 1312-1314. 95. Li, C., et al., Role of boundary layer diffusion in vapor deposition growth of chalcogenide nanosheets: The case of GeS. ACS nano, 2012. 6(10): p. 8868-8877. 96. Shi, Y., et al., van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano letters, 2012. 12(6): p. 2784-2791. 97. Morgan, A. and G. Somorjai, Low energy electron diffraction studies of gas adsorption on the platinum (100) single crystal surface. Surface Science, 1968. 12(3): p. 405-425. 98. Sutter, P.W., J.-I. Flege, and E.A. Sutter, Epitaxial graphene on ruthenium. Nature materials, 2008. 7(5): p. 406-411. 99. Coraux, J., et al., Structural coherency of graphene on Ir (111). Nano letters, 2008. 8(2): p. 565-570. 100. Hamilton, J. and J. Blakely, Carbon segregation to single crystal surfaces of Pt, Pd and Co. Surface Science, 1980. 91(1): p. 199-217. 101. Choi, T., C. Ruggiero, and J. Gupta, Tunneling spectroscopy of ultrathin insulating Cu 2 N films, and single Co adatoms. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2009. 27(2): p. 887-890. 102. Voiry, D., A. Mohite, and M. Chhowalla, Phase engineering of transition metal dichalcogenides. Chemical Society Reviews, 2015. 44(9): p. 2702-2712. 103. Wilson, J.A., F. Di Salvo, and S. Mahajan, Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Advances in Physics, 1975. 24(2): p. 117-201. 104. Meyer, J.C., et al., The structure of suspended graphene sheets. arXiv preprint cond-mat/0701379, 2007. 105. Bertolazzi, S., J. Brivio, and A. Kis, Stretching and breaking of ultrathin MoS2. ACS nano, 2011. 5(12): p. 9703-9709. 106. Eda, G., et al., Coherent atomic and electronic heterostructures of single-layer MoS2. Acs Nano, 2012. 6(8): p. 7311-7317. 107. Eda, G., et al., Photoluminescence from chemically exfoliated MoS2. Nano letters, 2011. 11(12): p. 5111-5116. 72 108. Ganal, P., et al., Soft chemistry induced host metal coordination change from octahedral to trigonal prismatic in 1T-TaS2. Solid State Ionics, 1993. 59(3-4): p. 313-319. 109. Smith, R.J., et al., Large‐scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Advanced Materials, 2011. 23(34): p. 3944-3948. 110. Zeng, Z., et al., An Effective Method for the Fabrication of Few‐Layer‐Thick Inorganic Nanosheets. Angewandte Chemie International Edition, 2012. 51(36): p. 9052-9056. 111. MacNeil, S., Progress and opportunities for tissue-engineered skin. Nature, 2007. 445(7130): p. 874-880. 112. Escobar-Chávez, J.J., et al., Nanocarrier systems for transdermal drug delivery, in Recent Advances in Novel Drug Carrier Systems. 2012, InTech. 113. Mishra, A.K., K. Lakshmi, and L. Huang, Eco-friendly synthesis of metal dichalcogenides nanosheets and their environmental remediation potential driven by visible light. Scientific reports, 2015. 5: p. 15718. 114. Zhou, M., et al., Colloidal preparation and electrocatalytic hydrogen production of MoS 2 and WS 2 nanosheets with controllable lateral sizes and layer numbers. Nanoscale, 2016. 8(33): p. 15262-15272. 115. Rout, C.S., et al., Superior field emission properties of layered WS2-RGO nanocomposites. Scientific reports, 2013. 3.
|