跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/13 11:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林聖鈞
研究生(外文):Sheng-Jiun Lin
論文名稱:二維二硫化鎢/高分子複合材料之製備及其於電誘導經皮藥物釋放
論文名稱(外文):Preparation of Two - dimensional Tungsten Disulfide / polymer Composites and electrical induction percutaneous drug release
指導教授:蔡協致
指導教授(外文):Hsieh-Chih Tsai
口試委員:蕭百芬鄭智嘉林宣因
口試日期:2017-07-26
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:應用科技研究所
學門:自然科學學門
學類:其他自然科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:84
中文關鍵詞:二硫化鎢層狀電刺激藥物釋放
外文關鍵詞:WS2LayeredElectrically StimuliDrug Release
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
近年來,過渡金屬硫族化合物如二硫化鉬(MoS2)、二硫化鎢(WS2)等單層之二維半 導體材料,因具有獨特的光電特性並在單層時導電性最佳,在層狀的應用受到了學術界 的高度重視,成為當前研究的熱點材料之一。二維奈米材料是二維層狀材料在奈米級厚 度的薄片狀材料,具有優異的光學、熱學、電學、機械學方面的特性。電誘導具有良好 的可控性並允許精確控制藥物釋放的性質可以運用於藥物傳遞上。本研究使用半導體二 硫化鎢來製備此複合型藥物載體。使用三種不同的硫醇(TGA、Mercaptosuccinic acid、 2-Ethanethiol)並把各種硫醇分三種不同重量比例來對二硫化鎢進行剝層,並探討各種硫 醇對二硫化鎢之剝層上何種較佳,由拉曼光譜儀測量得知三種剝層效果差異不大,並於 剝層後的二硫化鎢包覆藥物(5-Fluorouracil),並由拉曼光譜儀分析 5-Fluorouracil 於二硫 化鎢層狀上之分佈,證實二硫化鎢層狀上確實可攜載 5-Fluorouracil 的存在。而藥物含 量的量測可由紫外-可見光光譜計算,結果顯示 2-Ethanethiol 修飾的二硫化鎢可攜載較 多的藥物。目前初步電誘導藥物釋放實驗顯示,我們可以藉由施加小幅電量來達到提升 藥物釋放效果。
Stimuli-responsive or “smart” biomaterials are of great interest in the field of biotechnology and biomedicine. Drug delivery system based on external stimulus-responsive materials for controlled and long-term drug release under an action external action offer the promising of new treatment. Here we present, electrically triggered drug release form WS2 nanocomposite composed of two dimensional materials integrate with conducting polymer such as polypyrole. In this study, three thiol compounds was used to study the exfoliation of WS2. The exfoliation of WS2 few layers were characterized by Raman and Uv-vis spectrum. In addition, the polypyrole was then added in the exfoliated WS2. The current results showed that therapeutic molecule only released from nanocomposite, no passive drug release is expected. Currently, we still continue to utilize the ultrasound waves to reduce the size decrease the height of the WS2 nanosheet to enhanced drug loading in system to achieve enhanced drug release.
摘要 .................................................................... I
Abstract ............................................................... II
總目錄 ................................................................ III
圖目錄 .................................................................. V
表目錄 ................................................................ VII
第一章 前言 .......................................................... 1
1.1 研究動機和目的........................................................... 1
第二章 文獻回顧 ...................................................... 3
2.1 智能藥物輸送系統及其臨床潛力 ............................................ 3 2.2 智能藥物遞奈米平台的設計理論 ............................................ 3 2.3 不同刺激應答奈米平台 ................................................... 4
2.3.1 pH 應答............................................................... 5 2.3.2 氧化還原應答 ......................................................... 6 2.3.3 酶應答 ............................................................... 6 2.3.4 溫度應答 ............................................................. 7 2.3.5 光、磁和超聲應答 ..................................................... 7 2.3.6 其他應答系統 ......................................................... 8 2.3.7 電刺激應答 ........................................................... 9
2.4 智能奈米級 DDS........................................................... 9 2.5 二維材料 ............................................................... 11 2.5.1 二維材料的介紹 ...................................................... 11 2.5.2 二維材料的結構 ...................................................... 12 2.5.3 二維材料的特性 ...................................................... 18 2.5.4 過渡金屬二硫化物(TMD)特性 ........................................... 18 2.5.5 過渡金屬二硫化鎢(WS2)介紹............................................ 24 2.6 皮膚構造及經皮吸收...................................................... 25 ............................................................ 25 ........................................................ 29
第三章 實驗方法 ..................................................... 30
3.1 實驗藥品及耗材.......................................................... 30 3.2 實驗儀器 ............................................................... 34 3.2.1 紫外-可見光光譜儀(Ultraviolet-Visible Spectroscopy,UV/Vis) ......... 35 3.2.2 粒徑及電位分析儀(Dynamic Light Scattering,DLS) ..................... 35 3.2.3 拉曼光譜儀(Raman).................................................... 36
2.6.1 皮膚構造
2.6.2 皮膚吸收途徑
III
3.2.4 穿透式電子顯微鏡(Electron Eicroscope,TEM) ......................... 36 3.2.5 原子力顯微鏡(Atomic Force Microscope,AFM) ......................... 36 3.2.6 X-射線繞射分析 (XRD) ................................................ 37 3.2.7 高效液相色譜法(High Performance Liquid Chromatography,HPLC) ......... 37 3.2.8 體外電誘導藥物釋放設計 .............................................. 38
3.3 實驗流程 ............................................................... 39 3.4 實驗過程 ............................................................... 40
3.4.1 WS2 表面改質與分層 .................................................. 40
3.4.2 分層後二硫化鎢與 Polypyrrole......................................... 41
3.4.3 藥物包覆 ............................................................ 42
3.4.4 電誘導藥物釋放設計 .................................................. 43
3.4.5 裸鼠皮膚電刺激實驗 .................................................. 44
第四章 結果與討論 ...................................................... 45
4.1 二硫化鎢表面改質與分層之鑑定 ........................................... 45
4.1.1 二維 WS2 粒徑及電位量測 ............................................... 45 4.1.2 二維 WS2 之紫外及可見光譜分析 ......................................... 47 4.1.3 二維 WS2 之拉曼光譜分析 ............................................... 49 4.1.4 二維 WS2 之電子顯微鏡分析 ............................................. 51 4.1.5 二維 WS2 之原子力顯微鏡分析 ........................................... 52 4.1.6 二維 WS2 之 X 光繞射分析 ............................................... 53
4.2 藥物包覆 ............................................................... 54
4.2.1 5-Fu 藥物濃度檢量線.................................................. 54 4.2.2 5-Fu 包覆量.......................................................... 55 4.2.3 藥物於複合材料分佈成像............................................... 56
4.3 體外電誘導藥物釋放...................................................... 58 4.4 動物實驗 ............................................................... 59 4.4.1 螢光顯微鏡........................................................... 59 4.4.2 拉曼光譜分佈分析..................................................... 62 4.4.3 高效液相色譜法定量分析............................................... 63
第五章 結論 ............................................................ 65 第六章 參考文獻 ....................................................... 66
1. Tanaka, T., Collapse of gels and the critical endpoint. Physical Review Letters, 1978. 40(12): p. 820.
2. Yatvin, M.B., et al., Design of liposomes for enhanced local release of drugs by hyperthermia. Science, 1978. 202(4374): p. 1290-1293.
3. Mura, S., J. Nicolas, and P. Couvreur, Stimuli-responsive nanocarriers for drug delivery. Nature materials, 2013. 12(11): p. 991-1003.
4. Kelley, E.G., et al., Stimuli-responsive copolymer solution and surface assemblies for biomedical applications. Chemical Society Reviews, 2013. 42(17): p. 7057-7071.
5. Liu, J., et al., pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnology advances, 2014. 32(4): p. 693-710.
6. Ganesh, V.A., A. Baji, and S. Ramakrishna, Smart functional polymers–a new route towards creating a sustainable environment. RSC Advances, 2014. 4(95): p. 53352-53364.
7. Gao, W., J.M. Chan, and O.C. Farokhzad, pH-responsive nanoparticles for drug delivery. Molecular pharmaceutics, 2010. 7(6): p. 1913-1920.
8. Yu, P., et al., Reversal of doxorubicin resistance in breast cancer by mitochondria-targeted pH-responsive micelles. Acta biomaterialia, 2015. 14: p. 115-124.
9. Stubbs, M., et al., Causes and consequences of tumour acidity and implications for treatment. Molecular medicine today, 2000. 6(1): p. 15-19.
10. Neri, D. and C.T. Supuran, Interfering with pH regulation in tumours as a therapeutic strategy. Nature reviews Drug discovery, 2011. 10(10): p. 767-777.
11. Lee, E.S., et al., Tumor pH-responsive flower-like micelles of poly (L-lactic acid)-b-poly (ethylene glycol)-b-poly (L-histidine). Journal of Controlled Release, 2007. 123(1): p. 19-26.
12. Cheng, R., et al., Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials, 2013. 34(14): p. 3647-3657.
13. Pan, Y.-J., et al., Redox/pH dual stimuli-responsive biodegradable nanohydrogels with varying responses to dithiothreitol and glutathione for controlled drug release. Biomaterials, 2012. 33(27): p. 6570-6579.
14. Chen, W., et al., Redox and pH-responsive degradable micelles for dually activated intracellular anticancer drug release. Journal of controlled release, 2013. 169(3): p. 171-179.
15. Huo, M., et al., Redox-responsive polymers for drug delivery: from molecular design to applications. Polymer Chemistry, 2014. 5(5): p. 1519-1528.
66
16. Wang, J., et al., Tumor Redox Heterogeneity‐Responsive Prodrug Nanocapsules for Cancer Chemotherapy. Advanced Materials, 2013. 25(27): p. 3670-3676.
17. Torchilin, V.P., Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nature reviews Drug discovery, 2014. 13(11): p. 813-827.
18. Wilson, D.S., et al., Orally delivered thioketal nanoparticles loaded with TNF-α– siRNA target inflammation and inhibit gene expression in the intestines. Nature materials, 2010. 9(11): p. 923-928.
19. Nguyen, M.M., et al., Enzyme‐Responsive Nanoparticles for Targeted Accumulation and Prolonged Retention in Heart Tissue after Myocardial Infarction. Advanced Materials, 2015. 27(37): p. 5547-5552.
20. Callmann, C.E., et al., Therapeutic Enzyme‐Responsive Nanoparticles for Targeted Delivery and Accumulation in Tumors. Advanced Materials, 2015. 27(31): p. 4611-4615.
21. De La Rica, R., D. Aili, and M.M. Stevens, Enzyme-responsive nanoparticles for drug release and diagnostics. Advanced drug delivery reviews, 2012. 64(11): p. 967-978.
22. Lock, L.L., et al., Enzyme-specific doxorubicin drug beacon as drug-resistant theranostic molecular probes. ACS Macro Letters, 2015. 4(5): p. 552-555.
23. Shi, Y., et al., Reversible Addition–Fragmentation Chain Transfer Synthesis of a Micelle-Forming, Structure Reversible Thermosensitive Diblock Copolymer Based on the N-(2-Hydroxy propyl) Methacrylamide Backbone. ACS Macro Letters, 2013. 2(5): p. 403-408.
24. Shi, Y., et al., Π–Π stacking increases the stability and loading capacity of thermosensitive polymeric micelles for chemotherapeutic drugs. Biomacromolecules, 2013. 14(6): p. 1826-1837.
25. Shi, Y., et al., Anthracene functionalized thermosensitive and UV-crosslinkable polymeric micelles. Polymer Chemistry, 2015. 6(11): p. 2048-2053.
26. Danhier, F., O. Feron, and V. Préat, To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. Journal of Controlled Release, 2010. 148(2): p. 135-146.
27. Adelsberger, J., et al., Thermoresponsive PS-b-PNIPAM-b-PS micelles: aggregation behavior, segmental dynamics, and thermal response. Macromolecules, 2010. 43(5): p. 2490-2501.
28. Zhao, Y., et al., PEGylated thermo-sensitive poly (amidoamine) dendritic drug delivery systems. International journal of pharmaceutics, 2011. 409(1): p. 229-236.
29. Lal, S., S.E. Clare, and N.J. Halas, Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Accounts of chemical research, 2008. 41(12): p. 1842-1851.
67
30. Sun, J., et al., Fibrous Aggregation of Magnetite Nanoparticles Induced by a Time‐ Varied Magnetic Field. Angewandte Chemie International Edition, 2007. 46(25): p. 4767-4770.
31. Liu, J., et al., Magnetically sensitive alginate-templated polyelectrolyte multilayer microcapsules for controlled release of doxorubicin. The Journal of Physical Chemistry C, 2010. 114(17): p. 7673-7679.
32. Chen, Z., et al., Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. Acs Nano, 2012. 6(5): p. 4001-4012.
33. Fang, K., et al., Magnetic field activated drug release system based on magnetic PLGA microspheres for chemo-thermal therapy. Colloids and Surfaces B: Biointerfaces, 2015. 136: p. 712-720.
34. Yang, F., et al., Controlled Drug Release and Hydrolysis Mechanism of Polymer– Magnetic Nanoparticle Composite. ACS applied materials & interfaces, 2015. 7(18): p. 9410-9419.
35. Hu, K., et al., A novel magnetic hydrogel with aligned magnetic colloidal assemblies showing controllable enhancement of magnetothermal effect in the presence of alternating magnetic field. Advanced Materials, 2015. 27(15): p. 2507-2514.
36. Wang, F., et al., Diffusion and clearance of superparamagnetic iron oxide nanoparticles infused into the rat striatum studied by MRI and histochemical techniques. Nanotechnology, 2010. 22(1): p. 015103.
37. Yue-Jian, C., et al., Synthesis, self-assembly, and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent. Drug Development and Industrial Pharmacy, 2010. 36(10): p. 1235-1244.
38. Xie, J., et al., High-performance PEGylated Mn–Zn ferrite nanocrystals as a passive-targeted agent for magnetically induced cancer theranostics. Biomaterials, 2014. 35(33): p. 9126-9136.
39. Xiong, F., et al., Rubik-like magnetic nanoassemblies as an efficient drug multifunctional carrier for cancer theranostics. Journal of Controlled Release, 2013. 172(3): p. 993-1001.
40. Song, L., et al., Effective PEGylation of Fe3O4 nanomicelles for in vivo MR imaging. Journal of nanoscience and nanotechnology, 2015. 15(6): p. 4111-4118.
41. Liu, D., et al., Conjugation of paclitaxel to iron oxide nanoparticles for tumor imaging and therapy. Nanoscale, 2012. 4(7): p. 2306-2310.
42. Yang, H.-W., et al., Self-protecting core-shell magnetic nanoparticles for targeted, traceable, long half-life delivery of BCNU to gliomas. Biomaterials, 2011. 32(27): p. 6523-6532.
68
43. Hayashi, K., et al., Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics, 2013. 3(6): p. 366-376.
44. Paris, J.L., et al., Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS nano, 2015. 9(11): p. 11023-11033.
45. Guo, Q., et al., Block versus random amphiphilic glycopolymer nanopaticles as glucose-responsive vehicles. Biomacromolecules, 2015. 16(10): p. 3345-3356.
46. Wu, Q., et al., Organization of glucose-responsive systems and their properties.
Chemical reviews, 2011. 111(12): p. 7855-7875.
47. Gu, Z., et al., Injectable nano-network for glucose-mediated insulin delivery. ACS
nano, 2013. 7(5): p. 4194-4201.
48. Murdan, S., Electro-responsive drug delivery from hydrogels. Journal of controlled
release, 2003. 92(1): p. 1-17.
49. Yun, J., et al., Electro-responsive transdermal drug delivery behavior of
PVA/PAA/MWCNT nanofibers. European Polymer Journal, 2011. 47(10): p.
1893-1902.
50. Ying, X., et al., Angiopep‐Conjugated Electro‐Responsive Hydrogel Nanoparticles:
Therapeutic Potential for Epilepsy. Angewandte Chemie International Edition, 2014.
53(46): p. 12436-12440.
51. Curcio, M., et al., On demand delivery of ionic drugs from electro-responsive CNT
hybrid films. RSC Advances, 2015. 5(56): p. 44902-44911.
52. Schmaljohann, D., Thermo-and pH-responsive polymers in drug delivery. Advanced
drug delivery reviews, 2006. 58(15): p. 1655-1670.
53. Zhang, L., et al., Thermo and pH dual‐responsive nanoparticles for anti‐cancer drug
delivery. Advanced Materials, 2007. 19(19): p. 2988-2992.
54. Zhang, Z., J. Wang, and C. Chen, Near‐Infrared Light‐Mediated Nanoplatforms for
Cancer Thermo‐Chemotherapy and Optical Imaging. Advanced Materials, 2013.
25(28): p. 3869-3880.
55. Jochum, F.D. and P. Theato, Thermo-and light responsive micellation of azobenzene
containing block copolymers. Chemical Communications, 2010. 46(36): p.
6717-6719.
56. Yang, F., et al., Bubble microreactors triggered by an alternating magnetic field as
diagnostic and therapeutic delivery devices. small, 2010. 6(12): p. 1300-1305.
57. Yang, F., et al., A Hydrogen Peroxide‐Responsive O2 Nanogenerator for Ultrasound and Magnetic‐Resonance Dual Modality Imaging. Advanced Materials, 2012. 24(38):
p. 5205-5211.
69
58. Yang, F., et al., Controlled release of Fe3O4 nanoparticles in encapsulated microbubbles to tumor cells via sonoporation and associated cellular bioeffects. Small, 2011. 7(7): p. 902-910.
59. Yang, F., et al., Altering the response of intracellular reactive oxygen to magnetic nanoparticles using ultrasound and microbubbles. Science China Materials, 2015. 58(6): p. 467-480.
60. Cai, X., F. Yang, and N. Gu, Applications of magnetic microbubbles for theranostics. Theranostics, 2012. 2(1): p. 103-112.
61. Delcea, M., H. Möhwald, and A.G. Skirtach, Stimuli-responsive LbL capsules and nanoshells for drug delivery. Advanced drug delivery reviews, 2011. 63(9): p. 730-747.
62. Stuart, M.A.C., et al., Emerging applications of stimuli-responsive polymer materials. Nature materials, 2010. 9(2): p. 101-113.
63. Wilson, J. and A. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Advances in Physics, 1969. 18(73): p. 193-335.
64. Bednorz, J.G. and K.A. Müller, Possible high T c superconductivity in the Ba—La—Cu—O system, in Ten Years of Superconductivity: 1980–1990. 1986, Springer. p. 267-271.
65. Kamihara, Y., et al., Iron-based layered superconductor: LaOFeP. Journal of the American Chemical Society, 2006. 128(31): p. 10012-10013.
66. May, J.W., Platinum surface LEED rings. Surface Science, 1969. 17(1): p. 267-270.
67. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science,
2004. 306(5696): p. 666-669.
68. Stankovich, S., et al., Graphene-based composite materials. nature, 2006. 442(7100):
p. 282-286.
69. Kim, K.S., et al., Large-scale pattern growth of graphene films for stretchable
transparent electrodes. nature, 2009. 457(7230): p. 706-710.
70. Yang, H., et al., Graphene barristor, a triode device with a gate-controlled Schottky
barrier. Science, 2012. 336(6085): p. 1140-1143.
71. Frindt, R., Single crystals of MoS2 several molecular layers thick. Journal of Applied
Physics, 1966. 37(4): p. 1928-1929.
72. Joensen, P., R. Frindt, and S.R. Morrison, Single-layer MoS2. Materials research
bulletin, 1986. 21(4): p. 457-461.
73. Goli, P., et al., Charge density waves in exfoliated films of van der Waals materials:
evolution of Raman spectrum in TiSe2. Nano letters, 2012. 12(11): p. 5941-5945.
74. Dang, W., et al., Epitaxial heterostructures of ultrathin topological insulator
nanoplate and graphene. Nano letters, 2010. 10(8): p. 2870-2876. 70
75. Vogg, G., M. Brandt, and M. Stutzmann, Polygermyne—a prototype system for layered germanium polymers. Advanced Materials, 2000. 12(17): p. 1278-1281.
76. Chernozatonskii, L.A., B.N. Mavrin, and P.B. Sorokin, Determination of ultrathin diamond films by Raman spectroscopy. physica status solidi (b), 2012. 249(8): p. 1550-1554.
77. Naguib, M., et al., Two‐Dimensional Nanocrystals: Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 (Adv. Mater. 37/2011). Advanced Materials, 2011. 23(37): p. 4207-4207.
78. Kawamura, F., H. Yusa, and T. Taniguchi, Synthesis of rhenium nitride crystals with MoS2 structure. Applied Physics Letters, 2012. 100(25): p. 251910.
79. Tulsky, E.G. and J.R. Long, Dimensional reduction: a practical formalism for manipulating solid structures. Chemistry of Materials, 2001. 13(4): p. 1149-1166.
80. Wen, J.Y. and G.L. Wilkes, Organic/inorganic hybrid network materials by the sol-gel approach. Chemistry of Materials, 1996. 8(8): p. 1667-1681.
81. Schaak, R.E. and T.E. Mallouk, Prying apart Ruddlesden− Popper phases: Exfoliation into sheets and nanotubes for assembly of perovskite thin films. Chemistry of materials, 2000. 12(11): p. 3427-3434.
82. Tanaka, T., et al., Oversized titania nanosheet crystallites derived from flux-grown layered titanate single crystals. Chemistry of materials, 2003. 15(18): p. 3564-3568.
83. Ida, S., et al., Synthesis of hexagonal nickel hydroxide nanosheets by exfoliation of layered nickel hydroxide intercalated with dodecyl sulfate ions. Journal of the American Chemical Society, 2008. 130(43): p. 14038-14039.
84. Vogt, P., et al., Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Physical review letters, 2012. 108(15): p. 155501.
85. Ruggiero, C., et al., Emergence of surface states in nanoscale Cu 2 N islands. Physical Review B, 2011. 83(24): p. 245430.
86. Heinrich, A., et al., Single-atom spin-flip spectroscopy. Science, 2004. 306(5695): p. 466-469.
87. Olsson, F.E., et al., Multiple charge states of Ag atoms on ultrathin NaCl films. Physical review letters, 2007. 98(17): p. 176803.
88. Sterrer, M., et al., Control of the charge state of metal atoms on thin MgO films. Physical review letters, 2007. 98(9): p. 096107.
89. Potapenko, D.V., J. Hrbek, and R.M. Osgood, Scanning tunneling microscopy study of titanium oxide nanocrystals prepared on Au (111) by reactive-layer-assisted deposition. ACS nano, 2008. 2(7): p. 1353-1362.
90. Peng, Y., et al., Hydrothermal synthesis and characterization of single-molecular-layer MoS2 and MoSe2. Chemistry Letters, 2001. 30(8): p. 772-773.
71
91. Feng, J., et al., Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Advanced materials, 2012. 24(15): p. 1969-1974.
92. Cui, Y., et al., Diameter-controlled synthesis of single-crystal silicon nanowires. Applied Physics Letters, 2001. 78(15): p. 2214-2216.
93. Kong, J., A.M. Cassell, and H. Dai, Chemical vapor deposition of methane for single-walled carbon nanotubes. Chemical Physics Letters, 1998. 292(4): p. 567-574.
94. Li, X., et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009. 324(5932): p. 1312-1314.
95. Li, C., et al., Role of boundary layer diffusion in vapor deposition growth of chalcogenide nanosheets: The case of GeS. ACS nano, 2012. 6(10): p. 8868-8877.
96. Shi, Y., et al., van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano letters, 2012. 12(6): p. 2784-2791.
97. Morgan, A. and G. Somorjai, Low energy electron diffraction studies of gas adsorption on the platinum (100) single crystal surface. Surface Science, 1968. 12(3): p. 405-425.
98. Sutter, P.W., J.-I. Flege, and E.A. Sutter, Epitaxial graphene on ruthenium. Nature materials, 2008. 7(5): p. 406-411.
99. Coraux, J., et al., Structural coherency of graphene on Ir (111). Nano letters, 2008. 8(2): p. 565-570.
100. Hamilton, J. and J. Blakely, Carbon segregation to single crystal surfaces of Pt, Pd and Co. Surface Science, 1980. 91(1): p. 199-217.
101. Choi, T., C. Ruggiero, and J. Gupta, Tunneling spectroscopy of ultrathin insulating Cu 2 N films, and single Co adatoms. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2009. 27(2): p. 887-890.
102. Voiry, D., A. Mohite, and M. Chhowalla, Phase engineering of transition metal dichalcogenides. Chemical Society Reviews, 2015. 44(9): p. 2702-2712.
103. Wilson, J.A., F. Di Salvo, and S. Mahajan, Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Advances in Physics, 1975. 24(2): p. 117-201.
104. Meyer, J.C., et al., The structure of suspended graphene sheets. arXiv preprint cond-mat/0701379, 2007.
105. Bertolazzi, S., J. Brivio, and A. Kis, Stretching and breaking of ultrathin MoS2. ACS nano, 2011. 5(12): p. 9703-9709.
106. Eda, G., et al., Coherent atomic and electronic heterostructures of single-layer MoS2. Acs Nano, 2012. 6(8): p. 7311-7317.
107. Eda, G., et al., Photoluminescence from chemically exfoliated MoS2. Nano letters, 2011. 11(12): p. 5111-5116.
72
108. Ganal, P., et al., Soft chemistry induced host metal coordination change from octahedral to trigonal prismatic in 1T-TaS2. Solid State Ionics, 1993. 59(3-4): p. 313-319.
109. Smith, R.J., et al., Large‐scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Advanced Materials, 2011. 23(34): p. 3944-3948.
110. Zeng, Z., et al., An Effective Method for the Fabrication of Few‐Layer‐Thick Inorganic Nanosheets. Angewandte Chemie International Edition, 2012. 51(36): p. 9052-9056.
111. MacNeil, S., Progress and opportunities for tissue-engineered skin. Nature, 2007. 445(7130): p. 874-880.
112. Escobar-Chávez, J.J., et al., Nanocarrier systems for transdermal drug delivery, in Recent Advances in Novel Drug Carrier Systems. 2012, InTech.
113. Mishra, A.K., K. Lakshmi, and L. Huang, Eco-friendly synthesis of metal dichalcogenides nanosheets and their environmental remediation potential driven by visible light. Scientific reports, 2015. 5: p. 15718.
114. Zhou, M., et al., Colloidal preparation and electrocatalytic hydrogen production of MoS 2 and WS 2 nanosheets with controllable lateral sizes and layer numbers. Nanoscale, 2016. 8(33): p. 15262-15272.
115. Rout, C.S., et al., Superior field emission properties of layered WS2-RGO nanocomposites. Scientific reports, 2013. 3.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top