|
References [1] Vining G, Kuahci M, Pedersen S. Recent advances and future directions for quality engineering. Quality and Reliability Engineering International 2016; 32(3):863-875. doi:10.1002/qre.1797. [2] Li A, Kong Z. A generalized procedure for monitoring right-censored failure time data. Quality and Reliability Engineering International 2015; 31(4): 795-705. doi:10.1002/qre.1629. [3] Meeker WQ, Escobar LA. Statistical methods for reliability data. John Wiley and Sons: New York, 1998. [4] Padgett WJ, Spurrier JD. Shewhart-type charts for percentiles of strength distributions. Journal of Quality Technology 1990; 22(4):283–288. [5] Sze C, Pascual F. Control charts for monitoring Weibull distribution. Technical Report #wtrnumber2013-1, Department of Mathematics, Washington State University, Pullman, 2013. [6] Nichols MD, Padgett WJ. A bootstrap control chart for Weibull percentiles. Quality and Reliability Engineering International 2006; 22(2):141–151. doi:10.1002/qre.691. [7] Erto P, Pallotta G. A new control chart for Weibull technological processes. Quality Technology & Quantitative Management 2007; 4(4):553–567. doi: 10.1080/16843703.2007.11673170. [8] Erto P, Pallota G, Mastrangelo CM. A semi-empirical Bayesian chart to monitor Weibull percentiles. Scandinavian Journal of Statistics 2015; 42(3):701-712. doi: 10.1111/sjos.12131. [9] Steiner SH, Mackay RJ. Monitoring process with highly censored data. Journal of Quality Technology 2000; 32(3):199–208. [10] Steiner SH, MacKay RJ. Detecting changes in the mean from censored lifetime data. Frontiers in Statistical Quality Control 6:275–289. 2001. doi:10.1007/978-3-642-57590-7_17. [11] Steiner SH, Mackay RJ. Monitoring process with data censored owing to competing risks by using exponentially weighted moving average control charts. Journal of the Royal Statistical Society - Series C (Applied Statistics) 2001; 50(3):293–302. doi:10.1111/1467- 9876.00234. [12] Zhang L, Chen G. EWMA charts for monitoring the mean of censored Weibull lifetimes. Journal of Quality Technology 2004; 36(3): 321–328. [13] Dickinson RM, Olteanu Roberts DA, Driscoll AR, Woodall WH, Vining GG. CUSUM charts for monitoring the characteristic life of censored Weibull lifetimes. Journal of Quality Technology 2014; 46(4): 340-358. [14] He Y, Wang Z, He Z, Wei Y. Product reliability oriented design scheme of control chart based on the convergent CEV for censored characteristics. Mathematical Problems in Engineering 2015; Volume 2015, Article ID 128491, 11 pages. doi:10.1155/2015/128491. [15] Pascual F, Li S. Monitoring the Weibull shape parameter by control charts for the sample range of type II censored data. Quality and Reliability Engineering International 2012; 28(2):233–246. doi:10.1002/qre.1239. [16] Guo B, Wang BX. Control charts for monitoring the Weibull shape parameter based on type II censored sample. Quality and Reliability Engineering International 2014; 30(1):13–24. doi:10.1002/qre.1473. [17] Chan Y, Han B, Pascual F. Monitoring the Weibull shape parameter with type II censored data. Quality and Reliability Engineering International 31(5):795-705. doi:10.1002/qre.1631. [18] Haghighi F, Castagliola P. Conditional control charts for monitoring Weibull shape parameter under progressively type II censored data. Quality and Reliability Engineering International 2015; 31(6):1013-1022. doi:10.1002/qre.1659. [19] Huang X, Pascual F. ARL-unbiased control charts with alarm and warning lines for monitoring Weibull percentiles using the first-order statistic. Journal of Statistical Computation and Simulation 2011; 81(11):1677-1696. doi:10.1080/00949655.2010.499515. [20] Haghighi F, Pascual F, Castagliola P. Conditional control charts for Weibull quantiles under type II censoring. Quality and Reliability Engineering International 2015; 31(8):1649-1664. doi:10.1002/qre.1698. [21] Haghighi F. Bayes-conditional control charts for Weibull quantiles under type II censoring. Quality and Reliability Engineering International 2017; doi:10.1002/qre.2072. [22] Pascual F, Yang S, Ye M. Monitoring Weibull quantiles by EWMA charts based on a pivotal quantity conditioned on ancillary statistics. Quality and Reliability Engineering International 2017; 33(1):103-119. doi:10.1002/qre.1993. [23] Batson RG, Jeong Y, Fonseca DJ, Ray PS. Control charts for monitoring field data. Quality and Reliability Engineering International 2006; 22(7):733-755. doi:10.1002/qre.725. [24] Faraz A, Saniga EM, Heuchenne C. Shewhart control charts for monitoring reliability with Weibull lifetimes. Quality and Reliability Engineering International 2015; 31(8):1565-1574. doi:10.1002/qre.1692. [25] Hernandez F, Johnson RA. The large-sample behavior of transformations to normality. Journal of the American Statistical Association 1980; 75(372):855-861. doi:10.1080/01621459.1980.10477563. [26] Wang, F. K. MaxEWMA Control chart for a Weibull process with individual measurements. Quality and Reliability Engineering International 2017; 33(2):369-379.doi:10.1002/qre.2013. [27] Crowder SV. A simple method for studying run-length distributions of exponentially weighted moving average charts. Technometrics 1987; 29(4):401-407. doi:10.1080/00401706.1987.10488267. [28] Vance LC. Average run lengths of cumulative sum control charts for controlling normal means. Journal of Quality Technology 1986; 18(3):189-193. [29] Brook D, Evans. DA. An approach to the probability distribution of CUSUM run length. Biometrika 1972; 59(3):539–549. doi:10.1093/biomet/59.3.539. [30] Castagliola P, Celano G, Psarakis S. Monitoring the coefficient of variation using EWMA charts. Journal of Quality Technology 2011; 43(3):249-265. [31] Montgomery DC. Introduction to statistical quality control. Wiley: New York, 2013. [32] Han D, Tsung F. A reference-free cuscore chart for dynamic mean change detection and a unified framework for charting performance comparison. Journal of the American Statistical Association 2006; 101(473):368–386. doi:10.1198/016214505000000556.
|