跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/06 00:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:成驍彬
研究生(外文):XIAOBIN-CHENG
論文名稱:具完全資料和型II設限資料之韋伯分佈百分位的新管製圖
論文名稱(外文):New Control Charts for Monitoring the Weibull Percentiles under Complete Data and Type-II Censoring
指導教授:王福琨王福琨引用關係
指導教授(外文):Fu-Kwun Wang
口試委員:歐陽超陳欽雨
口試委員(外文):Chao Ou-YangChin-yeu Chen
口試日期:2017-5-25
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:工業管理系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:42
中文關鍵詞:韋伯分配百分位完全資料型II設限資料EWMA樞紐量CUSUM
外文關鍵詞:Weibull percentilescomplete dataType-II censoringEWMA chartpivotal quantityCUSUM chart
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,發表了三種新型管制圖用於監控完全資料和型II設限資料的韋伯低百分位。通過把韋伯分佈轉換成最小極值分佈,Pascaul et al. (2017)發表了一種新型的EWMA管制圖,稱之為基於條件與輔助統計量的樞紐量的EWMA-SEV-Q管製圖。延伸這個想法來創建一種CUSUM管製圖,稱之為CUSUM-SEV-Q。也提供了關於監控統計量更深入的探討。此外,通過把韋伯分佈轉換為標準常態分佈,發表了EWMA和CUSUM管製圖,分別稱之為EWMA-YP和CUSUM-YP,用來監控完全資料的韋伯百分位。在完全資料,通過比較ARL,EWMA-YP和CUSUM-YP管製圖表現優於EWMA-SEV-Q和CUSUM-SEV-Q管製圖。在設限資料,EWMA-SEV-Q表現優於CUSUM-SEV-Q。兩個數值案例用來描繪所發表管制圖的實際應用。
In this paper, we propose three new control charts for monitoring the lower Weibull percentiles under complete data and Type-II censoring. In transforming the Weibull distribution to the smallest extreme value distribution, Pascaul et al. (2017) presented an exponentially weighted moving average (EWMA) control chart, hereafter referred to as EWMA-SEV-Q, based on a pivotal quantity conditioned on ancillary statistics. We extended their concept to construct a cumulative sum (CUSUM) control chart denoted by CUSUM-SEV-Q. We provide more insights of the statistical properties of the monitoring statistic. Additionally, in transforming a Weibull distribution to a standard normal distribution, we propose EWMA and CUSUM control charts, denoted as EWMA-YP and CUSUM-YP, respectively, based on a pivotal quantity for monitoring the Weibull percentiles with complete data. With complete data, the EWMA-YP and CUSUM-YP control charts perform better than the EWMA-SEV-Q and CUSUM-SEV-Q control charts in terms of average run length (ARL). In Type-II censoring, the EWMA-SEV-Q chart is slightly better than the CUSUM-SEV-Q chart in terms of ARL. Two numerical examples are used to illustrate the applications of the proposed control charts.
Table of content
摘要 i
Abstract ii
Acknowledgement iii
Table of content iv
List of figures v
List of tables vi
Chapter 1: Introduction 1
Chapter 2: Literature review 4
Chapter 3: Research methods 7
3.1 Existing control charts 7
3.1.1 Weibull percentiles 7
3.1.2 Existing control charts for complete data and Type-II censoring 9
3.2 Three new controls 14
3.2.1 A new control chart for complete data and Type-II censoring 14
3.2.2 Two new control charts for complete data 14
3.3 Computing the ARLs of the four control charts 16
3.4 Optimal design parameters for EWMA-SEV-Q and CUSUM-SEV-Q control charts 16
Chapter 4: Comparison study 20
4.1 Computation of control limits 20
4.2 ARL comparison 20
Chapter 5: Numerical examples 27
Chapter 6: Conclusion 27
References 33
Appendix 33
References
[1] Vining G, Kuahci M, Pedersen S. Recent advances and future directions for quality engineering. Quality and Reliability Engineering International 2016; 32(3):863-875. doi:10.1002/qre.1797.
[2] Li A, Kong Z. A generalized procedure for monitoring right-censored failure time data. Quality and Reliability Engineering International 2015; 31(4): 795-705. doi:10.1002/qre.1629.
[3] Meeker WQ, Escobar LA. Statistical methods for reliability data. John Wiley and Sons: New York, 1998.
[4] Padgett WJ, Spurrier JD. Shewhart-type charts for percentiles of strength distributions. Journal of Quality Technology 1990; 22(4):283–288.
[5] Sze C, Pascual F. Control charts for monitoring Weibull distribution. Technical Report #wtrnumber2013-1, Department of Mathematics, Washington State University, Pullman, 2013.
[6] Nichols MD, Padgett WJ. A bootstrap control chart for Weibull percentiles. Quality and Reliability Engineering International 2006; 22(2):141–151. doi:10.1002/qre.691.
[7] Erto P, Pallotta G. A new control chart for Weibull technological processes. Quality Technology & Quantitative Management 2007; 4(4):553–567. doi: 10.1080/16843703.2007.11673170.
[8] Erto P, Pallota G, Mastrangelo CM. A semi-empirical Bayesian chart to monitor Weibull percentiles. Scandinavian Journal of Statistics 2015; 42(3):701-712. doi: 10.1111/sjos.12131.
[9] Steiner SH, Mackay RJ. Monitoring process with highly censored data. Journal of Quality Technology 2000; 32(3):199–208.
[10] Steiner SH, MacKay RJ. Detecting changes in the mean from censored lifetime data. Frontiers in Statistical Quality Control 6:275–289. 2001. doi:10.1007/978-3-642-57590-7_17.
[11] Steiner SH, Mackay RJ. Monitoring process with data censored owing to competing risks by using exponentially weighted moving average control charts. Journal of the Royal Statistical Society - Series C (Applied Statistics) 2001; 50(3):293–302. doi:10.1111/1467- 9876.00234.
[12] Zhang L, Chen G. EWMA charts for monitoring the mean of censored Weibull lifetimes. Journal of Quality Technology 2004; 36(3): 321–328.
[13] Dickinson RM, Olteanu Roberts DA, Driscoll AR, Woodall WH, Vining GG. CUSUM charts for monitoring the characteristic life of censored Weibull lifetimes. Journal of Quality Technology 2014; 46(4): 340-358.
[14] He Y, Wang Z, He Z, Wei Y. Product reliability oriented design scheme of control chart based on the convergent CEV for censored characteristics. Mathematical Problems in Engineering 2015; Volume 2015, Article ID 128491, 11 pages. doi:10.1155/2015/128491.
[15] Pascual F, Li S. Monitoring the Weibull shape parameter by control charts for the sample range of type II censored data. Quality and Reliability Engineering International 2012; 28(2):233–246. doi:10.1002/qre.1239.
[16] Guo B, Wang BX. Control charts for monitoring the Weibull shape parameter based on type II censored sample. Quality and Reliability Engineering International 2014; 30(1):13–24. doi:10.1002/qre.1473.
[17] Chan Y, Han B, Pascual F. Monitoring the Weibull shape parameter with type II censored data. Quality and Reliability Engineering International 31(5):795-705. doi:10.1002/qre.1631.
[18] Haghighi F, Castagliola P. Conditional control charts for monitoring Weibull shape parameter under progressively type II censored data. Quality and Reliability Engineering International 2015; 31(6):1013-1022. doi:10.1002/qre.1659.
[19] Huang X, Pascual F. ARL-unbiased control charts with alarm and warning lines for monitoring Weibull percentiles using the first-order statistic. Journal of Statistical Computation and Simulation 2011; 81(11):1677-1696. doi:10.1080/00949655.2010.499515.
[20] Haghighi F, Pascual F, Castagliola P. Conditional control charts for Weibull quantiles under type II censoring. Quality and Reliability Engineering International 2015; 31(8):1649-1664. doi:10.1002/qre.1698.
[21] Haghighi F. Bayes-conditional control charts for Weibull quantiles under type II censoring. Quality and Reliability Engineering International 2017; doi:10.1002/qre.2072.
[22] Pascual F, Yang S, Ye M. Monitoring Weibull quantiles by EWMA charts based on a pivotal quantity conditioned on ancillary statistics. Quality and Reliability Engineering International 2017; 33(1):103-119. doi:10.1002/qre.1993.
[23] Batson RG, Jeong Y, Fonseca DJ, Ray PS. Control charts for monitoring field data. Quality and Reliability Engineering International 2006; 22(7):733-755. doi:10.1002/qre.725.
[24] Faraz A, Saniga EM, Heuchenne C. Shewhart control charts for monitoring reliability with Weibull lifetimes. Quality and Reliability Engineering International 2015; 31(8):1565-1574. doi:10.1002/qre.1692.
[25] Hernandez F, Johnson RA. The large-sample behavior of transformations to normality. Journal of the American Statistical Association 1980; 75(372):855-861. doi:10.1080/01621459.1980.10477563.
[26] Wang, F. K. MaxEWMA Control chart for a Weibull process with individual measurements. Quality and Reliability Engineering International 2017; 33(2):369-379.doi:10.1002/qre.2013.
[27] Crowder SV. A simple method for studying run-length distributions of exponentially weighted moving average charts. Technometrics 1987; 29(4):401-407. doi:10.1080/00401706.1987.10488267.
[28] Vance LC. Average run lengths of cumulative sum control charts for controlling normal means. Journal of Quality Technology 1986; 18(3):189-193.
[29] Brook D, Evans. DA. An approach to the probability distribution of CUSUM run length. Biometrika 1972; 59(3):539–549. doi:10.1093/biomet/59.3.539.
[30] Castagliola P, Celano G, Psarakis S. Monitoring the coefficient of variation using EWMA charts. Journal of Quality Technology 2011; 43(3):249-265.
[31] Montgomery DC. Introduction to statistical quality control. Wiley: New York, 2013.
[32] Han D, Tsung F. A reference-free cuscore chart for dynamic mean change detection and a unified framework for charting performance comparison. Journal of the American Statistical Association 2006; 101(473):368–386. doi:10.1198/016214505000000556.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top