|
Agapito, G., Guzzi, P. H., & Cannataro, M. (2015). DMET-Miner: Efficient discovery of association rules from pharmacogenomic data. Journal of Biomedical Informatics, 56, 273-283. doi:10.1016/j.jbi.2015.06.005 Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. Paper presented at the Acm sigmod record. Bayardo, R. J., Agrawal, R., & Gunopulos, D. (2000). Constraint-Based Rule Mining in Large, Dense Databases. Data Mining and Knowledge Discovery, 4(2), 217-240. doi:10.1023/a:1009895914772 Cohen, E., Datar, M., Fujiwara, S., Gionis, A., Indyk, P., Motwani, R., . . . Yang, C. (2001). Finding interesting associations without support pruning. IEEE Transactions on Knowledge and Data Engineering, 13(1), 64-78. doi:10.1109/69.908981 Cremaschi, P., Carriero, R., Astrologo, S., Coli, C., Lisa, A., Parolo, S., & Bione, S. (2015). An Association Rule Mining Approach to Discover lncRNAs Expression Patterns in Cancer Datasets. Biomed Research International, 13. doi:10.1155/2015/146250 Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent Data Analysis, 1(1), 131-156. doi:http://dx.doi.org/10.1016/S1088-467X(97)00008-5 Fayyad, U. M., & Irani, K. B. (1993). Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning. Proceedings of 13th International Joint Conference on Artificial Intelligence, pp. 1022-1029. García, S., Luengo, J., Sáez, J. A., López, V., & Herrera, F. (2013). A Survey of Discretization Techniques: Taxonomy and Empirical Analysis in Supervised Learning. IEEE Transactions on Knowledge and Data Engineering, 25(4), 734-750. doi:10.1109/TKDE.2012.35 Grzymala-Busse, J. (2013). Discretization Based on Entropy and Multiple Scanning. Entropy, 15(5), 1486. Gupta, A., Mehrotra, K. G., & Mohan, C. (2010). A Clustering-Based Discretization for Supervised Learning. Statistics & Probability Letters , 80 (9-10), pp. 816-824. Hahsler, M. (2006). A Model-Based Frequency Constraint for Mining Associations from Transaction Data. Data Mining and Knowledge Discovery, 13(2), 137-166. doi:10.1007/s10618-005-0026-2 Han, J., & Kamber, M. (2006). Data Mining:Concepts and Techniques. Holland, J. H. (1992). Adaptation in Natural and Artificial Systems. Huan, L., & Setiono, R. (1995, 5-8 Nov 1995). Chi2: feature selection and discretization of numeric attributes. Paper presented at the Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence. Inzitari, D., Eliasziw, M., Gates, P., Sharpe, B., Chan, R., Meldrum, H., et al. (2000). The causes and risk of stroke in patients with asymptomatic internal-carotid-artery stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. . The New England journal of medicine , 342 (23), pp. 1693-1700. Ivancevic, V., Tusek, I., Tusek, J., Knezevic, M., Elheshk, S., & Lukovic, I. (2015). Using association rule mining to identify risk factors for early childhood caries. Computer Methods and Programs in Biomedicine, 122(2), 175-181. doi:10.1016/j.cmpb.2015.07.008 Ji, Y. Q., Ying, H., Tran, J., Dews, P., Lau, S. Y., & Massanari, R. M. (2016). A functional temporal association mining approach for screening potential drug-drug interactions from electronic patient databases. Informatics for Health & Social Care, 41(4), 387-404. doi:10.3109/17538157.2015.1064427 Ke, W., Yu, H., & Jiawei, H. (2003). Pushing support constraints into association rules mining. IEEE Transactions on Knowledge and Data Engineering, 15(3), 642-658. doi:10.1109/TKDE.2003.1198396 Kennedy, J., & Eberhart, R. (1995, Nov/Dec 1995). Particle swarm optimization. Paper presented at the Neural Networks, 1995. Proceedings., IEEE International Conference on. Koh, Y. S., & Rountree, N. (2005). Finding Sporadic Rules Using Apriori-Inverse. In T. B. Ho, D. Cheung, & H. Liu (Eds.), Advances in Knowledge Discovery and Data Mining: 9th Pacific-Asia Conference, PAKDD 2005, Hanoi, Vietnam, May 18-20, 2005. Proceedings (pp. 97-106). Berlin, Heidelberg: Springer Berlin Heidelberg. Koh, Y. S., & Rountree, N. (2010). Rare Association Rule Mining: An Overview. doi:10.4018/978-1-60566-754-6.ch001 Koh, Y. S., Rountree, N., & O’Keefe, R. A. (2008). Mining interesting imperfectly sporadic rules. Knowledge and Information Systems, 14(2), 179-196. doi:10.1007/s10115-007-0074-6 Li, J., Zhang, X., Dong, G., Ramamohanarao, K., & Sun, Q. (1999). Efficient Mining of High Confidence Association Rules without Support Thresholds. In J. M. Żytkow & J. Rauch (Eds.), Principles of Data Mining and Knowledge Discovery: Third European Conference, PKDD’99, Prague, Czech Republic, September 15-18, 1999. Proceedings (pp. 406-411). Berlin, Heidelberg: Springer Berlin Heidelberg. Liu, B., Hsu, W., & Ma, Y. (1999a). Mining association rules with multiple minimum supports. Paper presented at the Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, San Diego, California, USA. Liu, B., Hsu, W., & Ma, Y. (1999b). Pruning and summarizing the discovered associations. Paper presented at the Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, San Diego, California, USA. Luna, J. M., Romero, C., Romero, J. R., & Ventura, S. (2015). An evolutionary algorithm for the discovery of rare class association rules in learning management systems. Applied Intelligence, 42(3), 501-513. doi:10.1007/s10489-014-0603-4 Nahar, J., Imam, T., Tickle, K. S., & Chen, Y.-P. P. (2013). Association rule mining to detect factors which contribute to heart disease in males and females. Expert Systems with Applications, 40(4), 1086-1093. doi:http://dx.doi.org/10.1016/j.eswa.2012.08.028 Patel, U. Y. B. A. (2014). A Recent Overview: Rare Association Rule Mining. International Journal of Computer Applications. Quinlan, J. R. (1986). Induction of Decision Trees. Mach. Learn., 1(1), 81-106. doi:10.1023/a:1022643204877 Rahal, I., Ren, D., Wu, W., & Perrizo, W. (2004, 15-17 Nov. 2004). Mining confident minimal rules with fixed-consequents. Paper presented at the 16th IEEE International Conference on Tools with Artificial Intelligence. Robnik-Šikonja, M., & Kononenko, I. (2003). Theoretical and Empirical Analysis of ReliefF and RReliefF. Machine Learning, 53(1), 23-69. doi:10.1023/a:1025667309714 Seno, M., Karypis, G., Center, A. H. P. C. R., & Minnesota, U. o. (2001). LP Miner: An Algorithm for Finding Frequent Itemsets Using Length-decreasing Support Constraint: Army High Performance Computing Research Center. Solutions, S. C. T. (2012). Stem Cell Treatment Solutions. SunithaVanamala, sree, L. P., & Bhavani, S. D. (2013). Efficient Rare Association Rule Mining Algorithm. International Journal of Engineering Research and Applications (IJERA). Surana, A., Kiran, R. U., & Reddy, P. K. (2010). Selecting a Right Interestingness Measure for Rare Association Rules. Szathmáry, L. (2014). Finding minimal rare itemsets with an extended version of the Apriori algorithm. International Conference on Applied Informatics Eger, pp. 85–92. doi: 10.14794/ICAI.9.2014.1.85 Szathmary, L., Napoli, A., & Valtchev, P. (2007, 29-31 Oct. 2007). Towards Rare Itemset Mining. Paper presented at the 19th IEEE International Conference on Tools with Artificial Intelligence(ICTAI 2007). Tao, F., Murtagh, F., & Farid, M. (2003). Weighted Association Rule Mining using weighted support and significance framework. Paper presented at the Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, Washington, D.C. Vanamala, S., Sree, L. P., & Bhavani, S. D. (2014, 11-13 Dec. 2014). Rare association rule mining for data stream. Paper presented at the International Conference on Computing and Communication Technologies. Wang, K., He, Y., & Cheung, D. W. (2001). Mining confident rules without support requirement. Paper presented at the Proceedings of the tenth international conference on Information and knowledge management, Atlanta, Georgia, USA. Wulandari, C. W. P. (2014). Applying a Multivariate Discretization Method for Mining Association Rules from a Cerebrovascular Health Examination Dataset. Xiong, H., Tan, P. N., & Vipin, K. (2003, 19-22 Nov. 2003). Mining strong affinity association patterns in data sets with skewed support distribution. Paper presented at the Third IEEE International Conference on Data Mining. Yun, H., Ha, D., Hwang, B., & Ho Ryu, K. (2003). Mining association rules on significant rare data using relative support. Journal of Systems and Software, 67(3), 181-191. doi:https://doi.org/10.1016/S0164-1212(02)00128-0 Zhong, X. X., He, Q. Y., Liao, J. Q., Yin, X. J., Zhao, G. F., & Li, M. (2016). The compatibility law of Chinese patent medicines for the treatment of coronary heart disease angina pectoris based on association rules and complex network. International Journal of Clinical and Experimental Medicine, 9(6), 9418-9424.
|