|
1. Abou-Moustafa, K. T., Cheriet, M., & Suen, C. Y. (2004). On the Structure of Hidden Markov Models. Pattern Recognition Letters, 25(8), 923-931. doi:http://dx.doi.org/10.1016/j.patrec.2004.02.005 2. Akaike, H. (1974). A New Look at The Statistical Model Identification. IEEE Transactions on Automatic Control, 19(6), 716-723. doi:10.1109/TAC.1974.1100705 3. Akaike, H. (2011). Akaike’s Information Criterion. In M. Lovric (Ed.), International Encyclopedia of Statistical Science (pp. 25-25). Berlin, Heidelberg: Springer Berlin Heidelberg. 4. Baumgartner, U., Magele, C., & Renhart, W. (2004). Pareto Optimality and Particle Swarm Optimization. IEEE Transactions on Magnetics, 40(2), 1172-1175. doi:10.1109/TMAG.2004.825430. 5. Bicego, M., Dovier, A., & Murino, V. (2001). Designing the Minimal Structure of Hidden Markov Model by Bisimulation. In M. Figueiredo, J. Zerubia, & A. K. Jain (Eds.), Energy Minimization Methods in Computer Vision and Pattern Recognition: Third International Workshop, EMMCVPR 2001 Sophia Antipolis, France, September 3–5, 2001 Proceedings (pp. 75-90). Berlin, Heidelberg: Springer Berlin Heidelberg. 6. Bicego, M., Murino, V., & Figueiredo, M. A. T. (2003). A Sequential Pruning Strategy for the Selection of the Number of states in Hidden Markov Models. Pattern Recognition Letters, 24(9–10), 1395-1407. doi:http://dx.doi.org/10.1016/S0167-8655(02)00380-X 7. Biem, A. (2003, 3-6 Aug. 2003). A Model Selection Criterion for Classification: Application to HMM Topology Optimization. Paper presented at the Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings. 8. Bishnu, P. S., & Bhattacherjee, V. (2012). Software Fault Prediction Using Quad Tree-Based K-Means Clustering Algorithm. IEEE Transactions on Knowledge and Data Engineering, 24(6), 1146-1150. doi:10.1109/TKDE.2011.163 9. Blunsom, P. (2004). Hidden Markov Models. 10. Coello, C. A. C. (2006). Evolutionary Multi-Objective Optimization: A Historical View of the Field. IEEE Computational Intelligence Magazine, 1(1), 28-36. doi:10.1109/MCI.2006.1597059 11. Ertunc, H. M., Loparo, K. A., & Ocak, H. (2001). Tool Wear Condition Monitoring in Drilling Operations Using Hidden Markov Models (HMMs). International Journal of Machine Tools and Manufacture, 41(9), 1363-1384. doi:http://dx.doi.org/10.1016/S0890-6955(00)00112-7 12. Fahad, A., Alshatri, N., Tari, Z., Alamri, A., Khalil, I., Zomaya, A. Y., Bouras, A. (2014). A Survey of Clustering Algorithms for Big Data: Taxonomy and Empirical Analysis. IEEE Transactions on Emerging Topics in Computing, 2(3), 267-279. doi:10.1109/TETC.2014.2330519 13. Giantomassi, A., Ferracuti, F., Benini, A., Ippoliti, G., Longhi, S., & Petrucci, A. (2011). Hidden Markov Model for Health Estimation and Prognosis of Turbofan Engines. (54808), 681-689. doi:10.1115/DETC2011-48174 14. Hassan, M. R., & Nath, B. (2005, 8-10 Sept. 2005). Stock market Forecasting Using Hidden Markov Model: A New Approach. Paper presented at the 5th International Conference on Intelligent Systems Design and Applications (ISDA'05). 15. Horn, J., Nafpliotis, N., & Goldberg, D. E. (1994, 27-29 Jun 1994). A Niched Pareto Genetic Algorithm for MultiObjective Optimization. Paper presented at the Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence. 16. Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data Clustering: a Review. ACM Comput. Surv., 31(3), 264-323. doi:10.1145/331499.331504 17. Jen-Tzung, C., & Furui, S. (2005). Predictive Hidden Markov Model Selection for Speech Recognition. IEEE Transactions on Speech and Audio Processing, 13(3), 377-387. doi:10.1109/TSA.2005.845810 18. Johnson, S. C. (1967). Hierarchical Clustering Schemes. Psychometrika, 32(3), 241-254. doi:10.1007/bf02289588 19. Ku, C.-W. (2005). 利用多觀察值型隱馬可夫模型進行人體動作辨識. 71. 20. Lam Thu Bui, & Alam, S. (2008). An Introduction to Multi-Objective Optimization. 21. Liu, Y., Li, Z., Xiong, H., Gao, X., Wu, J., & Wu, S. (2013). Understanding and Enhancement of Internal Clustering Validation Measures. IEEE Transactions on Cybernetics, 43(3), 982-994. doi:10.1109/TSMCB.2012.2220543 22. MacQueen, J. (1967, 1967). Some Methods for Classification and Analysis of Multivariate Observations. Paper presented at the Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, Berkeley, Calif. 23. Mou-Yen, C., Amlan, K., & Jian, Z. (1994). Off-line Handwritten Word Recognition Using A Hidden Markov Model Type Stochastic Network. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(5), 481-496. doi:10.1109/34.291449 24. Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso, E., Chebel-Morello, B., Zerhouni, N., & Varnier, C. (2012, 2012-06-18). PRONOSTIA : An Experimental Platform for Bearings Accelerated Degradation Tests. Paper presented at the IEEE International Conference on Prognostics and Health Management, PHM'12., Denver, Colorado, United States. 25. Omran, M. G. H., Engelbrecht, A. P., & Salman, A. (2007). An Overview of Clustering Methods. Intell. Data Anal., 11(6), 583-605. 26. Qiu, H., Lee, J., Lin, J., & Yu, G. (2006). Wavelet Filter-based Weak Signature Detection Method and Its Application On Rolling Element Bearing Prognostics. Journal of Sound and Vibration, 289(4–5), 1066-1090. doi:http://doi.org/10.1016/j.jsv.2005.03.007 27. Rabiner, L. R. (1989). A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE, 77(2), 257-286. doi:10.1109/5.18626 28. Rosenberger, C., & Chehdi, K. (2000, 2000). Unsupervised Clustering Method with Optimal Estimation of the Number of Clusters: Application to Image Segmentation. Paper presented at the Proceedings 15th International Conference on Pattern Recognition. ICPR-2000. 29. Schwarz, G. (1978). Estimating the Dimension of A Model. The Annals of Statistics, 6(2), 461-464. doi:citeulike-article-id:90008 doi: 10.2307/2958889 30. Sloukia, F., Aroussi, M. E., Medromi, H., & Wahbi, M. (2013, 27-30 May 2013). Bearings Prognostic Using Mixture of Gaussians Hidden Markov Model and Support Vector Machine. Paper presented at the 2013 ACS International Conference on Computer Systems and Applications (AICCSA). 31. Stenger, B., Ramesh, V., Paragios, N., Coetzee, F., & Buhmann, J. M. (2001, 2001). Topology Free Hidden Markov Models: Application to Background Modeling. Paper presented at the Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001. 32. Su, W., & Jin, X. (2011, 17-18 Sept. 2011). Hidden Markov Model with Parameter-Optimized K-Means Clustering for Handwriting Recognition. Paper presented at the 2011 International Conference on Internet Computing and Information Services. 33. Tan, P.-N. (2006). Introduction to Data Mining: Pearson Education India. 34. Trentin, E., & Gori, M. (2001). A Survey of Hybrid ANN/HMM Models for Automatic Speech Recognition. Neurocomputing, 37(1–4), 91-126. doi:http://dx.doi.org/10.1016/S0925-2312(00)00308-8 35. Visser, I., & Speekenbrink, M. (2010). depmixS4: An R Package for Hidden Markov Models. 2010, 36(7), 21. doi:10.18637/jss.v036.i07 36. Vrieze, S. I. (2012). Model Selection and Psychological Theory: A Discussion of the Differences Between the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Psychological Methods, 17(2), 228-243. doi:10.1037/a0027127 37. Wang, L., Mehrabi, M. G., & Kannatey-Asibu, J. E. (2002). Hidden Markov Model-based Tool Wear Monitoring in Turning. Journal of Manufacturing Science and Engineering, 124(3), 651-658. doi:10.1115/1.1475320 38. Yoon, B.-J. (2009). Hidden Markov Models and Their Applications in Biological Sequence Analysis. Current Genomics, 10(6), 402-415. doi:10.2174/138920209789177575 39. Yu, J. (2012). Health Condition Monitoring of Machines Based on Hidden Markov Model and Contribution Analysis. IEEE Transactions on Instrumentation and Measurement, 61(8), 2200-2211. doi:10.1109/TIM.2012.2184015
|