|
Abramson, D. (1991). Constructing School Timetables Using Simulated Annealing: Sequential and Parallel Algorithms. Management Science, 37(1), 98-113. Akpinar, S. (2016). Hybrid large neighbourhood search algorithm for capacitated vehicle routing problem. Expert Systems with Applications, 61, 28-38. Alfa, A. S., Heragu, S. S., & Chen, M. (1991). A 3-OPT based simulated annealing algorithm for vehicle routing problems. Computers & Industrial Engineering, 21(1), 635-639. Alvarenga, G. B., & Mateus, G. R. (2004, 5-8 Dec. 2004). A two-phase genetic and set partitioning approach for the vehicle routing problem with time windows. Proceedings of the Hybrid Intelligent Systems, 2004. HIS '04. Fourth International Conference on (pp. 428-433). Alvarez, A., & Munari, P. (2017). An exact hybrid method for the vehicle routing problem with time windows and multiple deliverymen. Computers & Operations Research, 83, 1-12. Beamon, B. M. (1998). Supply chain design and analysis:: Models and methods. International Journal of Production Economics, 55(3), 281-294. Brandão, J. (2004). A tabu search algorithm for the open vehicle routing problem. European Journal of Operational Research, 157(3), 552-564. Chwif, L., Barretto, M. R. P., & Moscato, L. A. (1998). A solution to the facility layout problem using simulated annealing. Computers in Industry, 36(1–2), 125-132. Cordeau, J.-F., Laporte, G., Savelsbergh, M. W. P., & Vigo, D. (2007). Chapter 6 Vehicle Routing Handbook in OR & MS. (Vol. 14): Elsevier B.V. Coy, S. P., Golden, B. L., Runger, G. C., & Wasil, E. A. (2000). Using Experimental Design to Find Effective Parameter Setting for Heuristic. 7. Dantzig, G. B., & Ramser, J. H. (1959). The Truck Dispatching Problem. Management Science, 6(1), 80-91. Desroisers, J., Madsen, O. B. G., Solomon, M. M., & Soumis, F. (1999). 2-Path Cuts for the Vehicle Routing Problem with the Time Windows. 33(1). Fahimnia, B., Sarkis, J., & Davarzani, H. (2015). Green supply chain management: A review and bibliometric analysis. International Journal of Production Economics, 162, 101-114. Fu, Z., Eglese, R., & Li, L. Y. O. (2005). A New Tabu Search Heuristic for the Open Vehicle Routing Problem. The Journal of the Operational Research Society, 56(3), 267-274. Halim, C. (2015). Minimum Cost Vertex-Disjoint Path Cover Problem. Taipei: National Taiwan University of Science and Technology. Jayaraman, V., & Ross, A. (2003). A simulated annealing methodology to distribution network design and management. European Journal of Operational Research, 144(3), 629-645. Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. Kuo, Y. (2010). Using simulated annealing to minimize fuel consumption for the time-dependent vehicle routing problem. Computers & Industrial Engineering, 59(1), 157-165. Laporte, G. (1992). The vehicle routing problem: An overview of exact and approximate algorithms. European Journal of Operational Research, 59(3), 345-358. Lenstra, J. K., & Kan, A. H. G. R. (1981). Complexity of vehicle routing and scheduling problems. Networks, 11(2), 221-227. Letchford, A. N., Lysgaard, J., & Eglese, R. W. (2007). A Branch-and-Cut Algorithm for the Capacitated Open Vehicle Routing Problem. The Journal of the Operational Research Society, 58(12), 1642-1651. Li, F., Golden, B., & Wasil, E. (2007). The open vehicle routing problem: Algorithms, large-scale test problems, and computational results. Computers & Operations Research, 34(10), 2918-2930. Lin, S.-W., Chou, S.-Y., & Chen, S.-C. (2007). Meta-heuristic approaches for minimizing total earliness and tardiness penalties of single-machine schedulingwith a common due date. [journal article]. Journal of Heuristics, 13(2), 151-165. Lin, S.-W., Ying, K.-C., Lu, C.-C., & Gupta, J. N. D. (2011a). Applying multi-start simulated annealing to schedule a flowline manufacturing cell with sequence dependent family setup times. International Journal of Production Economics, 130(2), 246-254. Lin, S.-W., & Yu, V. F. (2015). A simulated annealing heuristic for the multiconstraint team orienteering problem with multiple time windows. Applied Soft Computing, 37, 632-642. Lin, S.-W., Yu, V. F., & Lu, C.-C. (2011b). A simulated annealing heuristic for the truck and trailer routing problem with time windows. Expert Systems with Applications, 38(12), 15244-15252. Lin, S.-W. T., K. -C.; Lee, Z. -J.; Hsi, F. -H. (2006). Applying Simulated Annealing Approach for Capacitated Vehicle Routing Problem. (IEEE international conference on Systems, Man, and Cybernetics), 639 -644. Magdalena, I. C. (2016). Particle Swarm Optimization for the Minimum Cost Vertex-Disjoint Path Cover Problem. Taipei: National Taiwan University of Science and Technology. McKendall Jr, A. R., Shang, J., & Kuppusamy, S. (2006). Simulated annealing heuristics for the dynamic facility layout problem. Computers & Operations Research, 33(8), 2431-2444. Meixell, M. J. (2005). The impact of setup costs, commonality, and capacity on schedule stability: An exploratory study. International Journal of Production Economics, 95(1), 95-107. Meixell, M. J., & Gargeya, V. B. (2005). Global supply chain design: A literature review and critique. Transportation Research Part E, 531-550. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics, 21(6), 1087-1092. Munari, P., & Gondzio, J. (2013). Using the primal-dual interior point algorithm within the branch-price-and-cut method. Computers & Operations Research, 40(8), 2026-2036. Pureza, V., Morabito, R., & Reimann, M. (2012). Vehicle routing with multiple deliverymen: Modeling and heuristic approaches for the VRPTW. European Journal of Operational Research, 218(3), 636-647. Repoussis, P. P., Tarantilis, C. D., & Ioannou, G. (2009). An Evolutionary Algorithm for the Open Vehicle Routing Problem with Time Windows. In F. B. Pereira & J. Tavares (Eds.), Bio-inspired Algorithms for the Vehicle Routing Problem. (pp. 55-75). Berlin, Heidelberg: Springer Berlin Heidelberg. Sariklis, D., & Powell, S. (2000). A Heuristic Method for the Open Vehicle Routing Problem. The Journal of the Operational Research Society, 51(5), 564-573. Solomon, M. M. (1987). Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints. Operations Research, 35(2), 254-265. Syslo, M., Deo, N., & Kowalik, J. S. (1983a). Discrete Optimization Algorithms with Pascal Programs: Prentice Hall Professional Technical Reference. Syslo, M. M., Deo, N., & Kowalik, J. S. (1983b). Discrete optimization algorithm: with pascal programs: Courier Dover Publications. Tarantilis, C. D., Diakoulaki, D., & Kiranoudis, C. T. (2004). Combination of geographical information system and efficiennt routing algorithms for real life distribution operations. 152. Tarantilis, C. D., & Kiranoudis, C. T. (2002). A list-based threshold accepting method for job shop scheduling problems. International Journal of Production Economics, 77(2), 159-171. Toth, P., & Vigo, D. (2002). The vehicle routing problem. Tseng, Y.-y., Yue, W. L., & Taylor, M. A. (2005). The role of transportation in logistics chain. 5. Van Breedam, A. (1995). Improvement heuristics for the Vehicle Routing Problem based on simulated annealing. European Journal of Operational Research, 86(3), 480-490. Xiao, Y., Zhao, Q., Kaku, I., & Xu, Y. (2012). Development of a fuel consumption optimization model for the capacitated vehicle routing problem. Computers & Operations Research, 39(7), 1419-1431. Yu, V. F., & Lin, S.-W. (2014). Multi-start simulated annealing heuristic for the location routing problem with simultaneous pickup and delivery. Applied Soft Computing, 24, 284-290. Yu, V. F., Redi, A. A. N. P., Hidayat, Y. A., & Wibowo, O. J. (2017a). A simulated annealing heuristic for the hybrid vehicle routing problem. Applied Soft Computing, 53, 119-132. Yu, V. F., Redi, A. A. N. P., Yang, C.-L., Ruskartina, E., & Santosa, B. (2017b). Symbiotic organisms search and two solution representations for solving the capacitated vehicle routing problem. Applied Soft Computing, 52, 657-672. Zare-Reisabadi, E., & Hamid Mirmohammadi, S. (2015). Site dependent vehicle routing problem with soft time window: Modeling and solution approach. Computers & Industrial Engineering, 90, 177-185.
|