[1] V. Subramanian, J. M. J. Frechent, P. C. Chang, and S. K. Volkman”, Progress Toward Development of All-Printed RFID Tags: Materials, Processes, and Devices”,44Proceeding Of The IEEE, Vol. 93, p. 1330 (2005)
[2] Z. Zheng-Tao, Jeffery T. Mason, Rudiger Dieckmann, and George G. Malliaras, “Humidity Sensors Based on Pentacene Thin-Film Transistors”, Appl. Phys. Lett. Vol. 1, p.4643 (2002)
[3] Jaeyoung J., Sooji Nam, Jihun H., Jong-Jin Park, Jungkyun Im, Chan Eon Park and Jong Min Kim, “Photocurable polymer gate dielectrics for cylindrical organic field-effect transistors with high bending stability,” Journal of Material Chemistry, Vol. 22, p.1054 (2012).
[4] T. T. Kawase, T. Shimoda, C. Newsome, H. Sirringhaus, R. H. Friend, “Inkjet Printing of Polymer Thin Film Transistors,” Thin Solid Films, Vol. 438, p.279 (2003).
[5] Y. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Additive, Nanoscale Patterning of Metal Films with a Stamp and a Surface Chemistry Mediated Transfer Process: Applications in plastic electronics,” Applied Physics Letters, Vol, 81, p.562 (2002).
[6] R. Schroeder, L. A. Majewski, M. Grell, J. Maunoury, J. Gautrot, P. Hodge, and M Turner,“Electrode Specific Electropolymerization of Ethylenedioxythiophene: Injection Enhancement in Organic Transistors,” Applied Physics Letters, Vol. 87, p.113501 (2005).
[7] T. Ji, J. Xie, and V. K. Varadan, “Design of pentacene thin film transistors on flexible substrates,” Proceedings of SPIE, Vol. 5763, p. 77 (2005).
[8] R. Ye, M. Baba, K. Suzuki, Y. Ohishi, and K. Mori, “Effects of O2 and H2O on electrical characteristics of pentacene thin film transistors,” Thin Solid Films, Vol. 464-465, p. 437 (2004).
[9] M. W. Shin, S. H. Jang, “Thermal Analysis of Active Layer in Organic Thin-Flm Transistors,” Organic Electronics, Vol. 13, p.767–770 (2012).
[10] C. B. Park, J. D. Lee, “Effect of Stacked Dielectric with High Dielectric Constant and Surface Modification On Current Enhancement in Pentacene Thin-film Transistors,” Current Applied Physics, Vol. 13, p.170-175 (2013).
[11] R. Roy, D. Agrawal, J. Cheng, and S. Gedevanishvili, “Full sintering of powdered-metal bodies in a microwave field”, Nature Vol. 399, pp, 668-670 (1999)
[12] J. Cheng, R. Roy, D. Agrawal, “Experimental proof of major role of magnetic field losses in microwave heating of metal and metallic composites”, Journal of Materials Science. Letters, Vol. 20, p, 1561-1563 (2001)
[13] R. Higuchi, H, Takashima, H, Kato, and Y. Kanno, “Thermal analysis of joule heat generated on metal thin film by microwave irradiation”, IEEE Int. Conf. Syst., P.1408-1412 (2006)
[14] A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular Electronic Device: Field‐Effect Transistor with a Polythiophene Thin Film,” Applied Physics Letters, Vol. 49, p. 1210 (1986).
[15] A. Assadi, C. Svensson, M. Willander, and O. Ingans, “Field‐Effect Mobility of Poly(3‐hexylthiophene),” Applied Physics Letters, Vol. 53, p. 195 (1988).
[16] J. Paloheimo, E. Punkka, H. Stubb, and P. Kuivalainen: in “Lower Dimensional Systems and Molecular Devices, ” NATO ASI Series (1989).
[17] Z. Bao, A. Dodabalapur, and A. J. Lovinger, “Soluble and Processable Regioregular Poly(3‐Hexylthiophene) for Thin Film Field‐Effect Transistor Applications with High Mobility,” Applied Physics Letters, Vol. 69, p. 4108 (1996).
[18] H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated Optoelectronic Devices Based on Conjugated Polymers,” Science, Vol. 280, p. 1741-1744 (1998).
[19] F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical Properties of Polyacetylene/ Polysiloxane Interface,” Journal of Applied Physics, Vol. 54, p. 3255 (1983).
[20] J. H. Burroughes, C. A. Jones, and R. H. Friend, “New Semiconductor Device Physics in Polymer Diodes and Transistors,” Nature, Vol. 335, p. 137-141 (1988).
[21] H. Fuchigami, A. Tsumura, and H. Koezuka, “Polythienylenevinylene Thin‐Film Transistor with High Carrier Mobility,” Applied Physics Letters, Vol. 63, p. 1372 (1993).
[22] F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries, P. Alnot, “Molecular engineering of organic semiconductors: design of self-assembly properties in conjugated thiophene oligomers,” Journal of the American Chemical Society, Vol. 115, p. 8716 (1993).
[23] B.Servet, G. Horowitz, S. Ries, O. Lagorsse, P. Alnot, A. Yassar, F. Deloffre, P. Srivastava, R. Hajlaoui, P. Lang, F. Garnier, “Polymorphism and Charge Transport in Vacuum-Evaporated Sexithiophene Films,” Chemistry of Materials, Vol. 6, p. 1809 (1994).
[24] A. Dodabalapur, L. Torsi, and H. E. Katz, “Organic Transistors: Two-Dimensional Transport and Improved Electrical Characteristics,” Science, Vol. 268, p. 270 (1995).
[25] C. D. Dimitrakopoulos, B. K. Furman, T. Graham, S. Hegde, and S. Purushothaman, "Field-Effect Transistors Comprising Molecular Beam Deposited α-ω-Di-hexyl-hexathienylene and Polymeric Insulators," Synthetic Metals, Vol. 92, p. 47, (1998).
[26] H. E. Katz, L. Torsi, A. Dodabalapur, “Synthesis, Material Properties, and Transistor Performance of Highly Pure Thiophene Oligomers,” Chemistry of Materials, Vol. 7, p. 2235 (1995).
[27] R. Hajlaoui, D. Fichou, G. Horowitz, B. Nessakh, M. Constant, F. Garnier, “Organic transistors using -octithiophene and , -dihexyl- -octithiophene: Influence of oligomer length versus molecular ordering on mobility,” Advanced Material, Vol. 9, p. 557 (1997).
[28] R. Hajlaoui, G. Horowitz, F. Garnier, A. Arce-Brouchet, L. Laigre, A. Elkassmi, F. Demanze, F. Kouki, “Improved field-effect mobility in short oligothiophenes: Quaterthiophene and quinquethiophene,” Advanced Material, Vol. 9, p. 389 (1997).
[29] J. H. Schön, Ch. Kloc, and B. Batlogg, “On the intrinsic limits of pentacene field-effect transistors,” Organic Electronics, Vol. 1, p. 57 (2000).
[30] Y. Y. Lin, D. J. Gundlach, S. Nelson, and T. N. Jackson, “Stacked pentacene layer organic thin-film transistors with improved characteristics,” IEEE Electron Device Letters, Vol. 18, p. 606 (1997).
[31] C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, “Molecular beam deposited thin films of pentacene for organic field effect transistor applications,” Journal of Applied Physics, Vol. 80, p. 2501 (1996).
[32] Y. Y. Lin, D. J. Gundlach, and T. N. Jackson, “High Mobility Pentacene Organic Thin Film Transistors,” 54th Annual Device Research Conference Digest, New York, p. 80 (1996).
[33] G. Horowitz, X. Peng, D. Fichou, and F. Garnier, “Role of the emiconductor/insulator interface in the characteristics of π-conjugated- oligomer-based thin-film transistors ,” Synthetic Metals, Vol. 51, p. 419 (1992).
[34] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, and R. M. Fleming, “C60 thin film transistors,” Applied Physics Letters, Vol. 67, p. 121, (1995).
[35] R. C. Haddon, T. Siegrist, R. M. Fleming, P. M. Bridenbaugh and R. A. Laudise, “Band structures of organic thin-film transistor materals,” J. MATER. CHEM, Vol. 5 (1995).
[36] A. R. Brown, D. M. de Leeuw, E. J. Lous, and E. E. Havinga, “Organic n-type field-effect transistor,” Synthetic Metals, Vol. 66, p. 257 (1994).
[37] J. G. Laquindanum, H. E. Katz, A. Dodabalapur, and A. J. Lovinger, “n-Channel Organic Transistor Materials Based on Naphthalene Frameworks,” Journal of the American Chemical Society, Vol. 118, p. 11331 (1996).
[38] G. Guillaud, M. Al Sadound, and M. Maitrot, “Field-effect transistors based on intrinsic molecular semiconductors,” Chemical Physics Letters, Vol. 167, p. 503 (1990).
[39] Z. Bao, A. J. Lovinger, and J. Brown, “New Air-Stable n-Channel Organic Thin Film Transistors,” Journal of the American Chemical Society, Vol. 120, p. 207 (1998).
[40] H. Fuchigami, A. Tsumura, and H. Koezuka, “Polythienylenevinylene thin‐film transistor with high carrier mobility,” Applied Physics Letters, Vol. 63, pp. 1372 (1993).
[41] C.D. Dimitrakopoulos, and P.R.L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics,” Advanced Material, Vol. 14, p. 99-117 (2002).
[42] M. Baldo, M. Deutsch, P. Burrows, H. Gossenberger, M. Gerstenberg, V. Ban, and S. Forrest, “Organic Vapor Phase Deposition,” Advanced Material, Vol. 10, p. 234-238 (1998).
[43] E. M. Conwell, “Impurity Band Conduction in Germanium and Silicon,” Physical Review Letters, Vol. 103, p. 51-61 (1956).
[44] N. F. Mott, “On the Transition to Metallic Conduction in Semiconductors,” Canadian Journal of Physics. Vol. 34, p. 1356 (1956).
[45] S. Locci, “Modeling of Physical and Electrical Characteristics of Organic Thin Film Transistors,” Masters Dissertation, University of Cagliari, (2009).
[46] P. G. Le Comber, and W. E. Spear, “Electronic Transport in Amorphous Silicon Films,” Physical Review Letters, Vol. 25, p. 509 (1970).
[47] C. W Kuo, “Properties of Carriers Transportation in Organic Thin Film Transistors,” Masters Dissertation, National Cheng Kung University, Tainan, Taiwan (2006).
[48] G. Horowitz, “Organic Field-Effect Transistors”, Advanced Materials, Vol, 10, p. 365377 (1998).
[49] D. Kumaki, T. Umeda, and S. Tokito, “Influence of H2O and O2 on Threshold Voltage Shift in Organic Thin-Film Transistors: Deposition of SiOH on SiO2 Gate-Insulator Surface,” Applied Physics Letters, Vol. 92, p. 093309 (2008).
[50] Y. H. Noh, Y. Park, S. M. Seo, and H. H. Lee, “Root Cause of Hysteresis in Organic Thin Film Transistor with Polymer Dielectric,” Organic Electronics, Vol. 7, p. 271-275 (2006).
[51] Y. Roichman, and N. Tessler, “Structures of polymer field-effect transistor: Experimental and numerical analyses,” Applied Physics Letters, Vol. 80, p. 151 (2002).
[52] I. Kymissis, C. D. Dimitrakopoulos, and S. Purushothaman, “High- Performance Bottom Electrode Organic Thin-Film Transistors,” IEEE Transactions on electron devices, Vol. 48, p.1060 (2001).
[53] G. B. Blanchet, C. R. Fincher, and M. Lefenfeld, “Contact resistance in organic thin film transistors,” Applied Physics Letters, Vol. 84, (2004).
[54] S. M. Sze, Physics of Semiconductor Devices, Second Edition, Wiley, New York, CH. 7 (1981).
[55] A. R. Brown, C. P. Jarrett, D. M. de Leeuw, and M. Matters, “Field-Effect Transistor Made from Solution-Procceed Organic Semiconductors,” Synthetic Metals, Vol. 88, p. 37 (1997).
[56] F. C. Chen, T. D. Chen, B. R. Zeng, and Y. W. Chung, “Influence of mechanical strain on the electrical properties of flexible organic thin-film transistors,” Semiconductor Science and Technology, Vol. 26, p. 034005 (2011).
[57] D. J. Yun, S. H. Lim, T. W. Lee, and S. W. Rhee, “Fabrication of the flexiblepentacene thin-film transistors on 304 and 430 stainless steel (SS) substrate,” Organic Electronics, Vol. 10, p. 970 (2009).
[58] 曾東雄,「可撓式塑膠基板上研製有機薄膜電晶體和場效電晶體」,碩士論文,國立成功大學,台南 (2009). [59] D. William, JR. Callister, “Fundamentals of Materials Science and Engineering, ” John Wiley and Sons, NY, p.128-129 (2002)
[60] S. Mototani, S. Ochial, X. Wang, et al. “Performance of organic field-effect transistors with poly(3-hexylthiophene)as the semiconductor layer and poly(4-vinylphenol) thin film untreated and treated by hexamethyldisilazane as the gate insulator, ” Japanese Journal of Applied Physics, Vol. 47, No. 1, p. 496–500 (2008)
[61] T. H. Kim, C. G. Han, and C. K. Song, “Instability of threshold voltage under constant bias stress in pentacene thin film transistors employing polyvinylphenol gate dielectric,” Thin Solid Films, Vol. 516, p. 1232(2008).
[62] C. L. Fan, M. C. Shang, M. Y. Hsia, S. J. Wang, B. R. Huang, and W. D. Lee, “Poly(4-vinylphenol) gate insulator with cross-linking using a rapid low-power microwave induction heating scheme for organic thin-film-transistors,” APL MATERALS, Vol. 4, p. 036105(2016)
[63] D. J. Grffiths, R. College “Introduction to Electrodynamic, ” library of congress-in-publication data (1999)
[64] T. H. Kim, C. G. Han, and C. K. Song, “Instability of threshold voltage under constant bias stress in pentacene thin film transistors employing polyvinylphenol gate dielectric,” Thin Solid Films, Vol. 516, p. 1232(2008)
[65] M. H. Choo, Jae Hoon Kim, and Seongil Im, “Hole transport in amorphous-crystalline-mixed and amorphous pentacene thin-film transistors,” Applied Physics Letters, Vol. 81, p. 4640 (2002).
[66] C. L. Fan, Y. Z. Lin, and C. H. Huang, “Combined scheme of UV/ozone and HMDS treatment on a gate insulator for performance improvement of a low-temperature-processed bottom-contact OTFT,” Semiconductor Science and Technology, Vol. 26, p. 045006 (2011).
[67] 陳意仁,「介電材料低溫交聯性聚乙烯苯酚應用於可撓曲性有機薄膜電晶體之研究」,碩士論文,國立成功大學,台南 (2007).