跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 11:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:ILMIATUL MASFUFIAH
研究生(外文):ILMIATUL MASFUFIAH
論文名稱:Enhanced Photoresponse of UV Photodetector Based on Ni/CNT-Doped ZnO Nanorods
論文名稱(外文):Enhanced Photoresponse of UV Photodetector Based on Ni/CNT-Doped ZnO Nanorods
指導教授:黃柏仁黃柏仁引用關係
指導教授(外文):Bohr-Ran Huang
口試委員:周賢鎧許正良
口試委員(外文):Shyan-Kay JouCheng-Liang Hsu
口試日期:2017-07-26
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:133
中文關鍵詞:Ni/CNT-Doped ZnONi-Doped ZnOCNT-Doped ZnOPhotodetector
外文關鍵詞:Ni/CNT-Doped ZnONi-Doped ZnOCNT-Doped ZnOPhotodetector
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
This study presents the photodetector prepared by using Ni-doped ZnO, CNTDoped ZnO, and Ni/CNT-Doped ZnO, which was grown on glass substrate with seed
layer coating as the pretreatment and hydrothermal method. The ZnO nanorods were
grown with different concentration of doping. The surface analysis were done by FESEM and EDS shows the increase of concentration linier with the increase of diameter
of nanorods, respectively. The combination of Ni/CNT-doped exhibit the highest
switch ratio of 4046.51. Additionally, the presented photodetector not only reveals high
switch ratio but also demonstrates a stable output responses. It also exhibits good
responsitivity as well as quantum efficiency, altogether revealing full potential to be
used for practical applications.
This study presents the photodetector prepared by using Ni-doped ZnO, CNTDoped ZnO, and Ni/CNT-Doped ZnO, which was grown on glass substrate with seed
layer coating as the pretreatment and hydrothermal method. The ZnO nanorods were
grown with different concentration of doping. The surface analysis were done by FESEM and EDS shows the increase of concentration linier with the increase of diameter
of nanorods, respectively. The combination of Ni/CNT-doped exhibit the highest
switch ratio of 4046.51. Additionally, the presented photodetector not only reveals high
switch ratio but also demonstrates a stable output responses. It also exhibits good
responsitivity as well as quantum efficiency, altogether revealing full potential to be
used for practical applications.
CONTENT

Abstract i
Acknowledgement ii
Contents iii
List of Figures vi
List of Tables x

Chapter 1. Introduction
1.1. Background 1
1.2. Motivation Aims 4
1.3. Thesis Organization 4
Chapter 2. Literature Review 7
2.1. Introduction of ZnO nanorods 7
2.2. UV Photodetector Mechanism 8
Chapter 3. Experimental Procedure 11
3.1. Fabrication of ZnO Nanorods 14
3.1.1. Cleaning Substrate 15
3.1.2. Seed Layer Preparation 15
3.1.3. Seed Layer Coating 16
3.1.4. Hydrothermal Method 17
3.2. Characterization 18
3.2.1. Scanning Electron Microscopy (SEM) 18
3.2.2. EDS 18
3.2.4. Raman Spectroscopy 19
3.2.5. Photoluminescence (PL) 19
3. 3. Measurement 20
3.3.1. Photo-Dark Current Measurement 20
3.3.2. I-t Measurement 21
3.3.3. Responsitivity Measurement 21
3.3.4. Stability Measurement 21
Chapter 4. The study of structural and physical properties of bare ZnO Nanorods 22
4.1. Seed layer coating 22
4.2. Hydrothermal process 23
4.3. Bare ZnO characterization 23


Chapter 5. The study of Structural and Physical properties of Ni-Doped ZnO Nanorods 28
5.1. Seed layer effect on Different Ni doping Concentration 28
5.2. Hydrothermal Process with Different Ni Doping Concentration 29
5.3. Seed layer No Ni/Hydrothermal with different Ni concentration 31
5.4. Seed layer Ni 0.05g /Hydrothermal with different Ni concentration 37
5.5. Seed layer Ni 0.1g /Hydrothermal with different Ni concentration 43

Chapter 6. The study of Structural and Physical Properties of CNT-doped ZnO Nanorods 60
6.1. Seed layer effect on Different Ni doping Concentration 60
6.2. Hydrothermal Process with Different Ni Doping Concentration 60
6.3. Seed layer CNT 0.001g /Hydrothermal with different CNT concentration 62
6.4. Seed layer CNT 0.003g /Hydrothermal with different CNT concentration 71
6.5. Seed layer CNT 0.005g /Hydrothermal with different CNT concentration 79

6.6. Seed layer CNT 0.007g /Hydrothermal with different CNT concentration 87

Chapter 7. The Study of Structural and Physical Properties of Ni/CNT-Doped ZnO Nanorods 97
7.1. Seed layer effect on Different Ni doping Concentration 97
7.2. Hydrothermal Process with Different Ni Doping Concentration 97
7.3. Seed layer CNT 0.005g /Hydrothermal with Ni 0.1g and different CNT concentration 99
7.4. Seed layer Ni 0.05g and different CNT concentration /Hydrothermal with Ni 0.1g 106
7.5. Seed layer Ni 0.1g and different CNT concentration /Hydrothermal with Ni 0.1g 113

Chapter 8 Conclusion and Future Work 114
8.1. Conclusions 114
8.2. Future Works 115
References 116
REFERENCE


[1] C.G. Nuniez, M. Sachsenhauser, B. Blashcke, A.G. Marin, J.A. Garrido, J.L. Pau, Effects of hydroxylation and silanization on the surface properties of ZnO nanowires. Acs Appl. Mater. Interfaces 7, 5331–5337 (2015).
[2] Kathryn E. Toghill and Richard G. Compton, Electrochemical Non-enzymatic Glucose Sensors: A Perspective and an Evaluation, Int. J. Electrochem. Sci, 5, 1246 – 1301, (2010).
[3] Wen-Hui Weng, Chih-Wei Wang, See-Tong Pang, Tung-Ming Pan, Enzymatic Glucose
Biosensor Based on TbYxOy Electrolyte-Insulator-Semiconductor, 163, 8, B445-B452, (2016).
[4] Sheng-Joue Young, Yi-Hsing Liu, Chih-Hung Hsiao, Shoou-Jinn Chang, Bo-Chin Wang, Tsung-Hsien Kao, Kai-Shiang Tsai, San-Lein Wu, ZnO-Based Ultraviolet Photodetectors With Novel Nanosheet Structures, IEEE Transactions On Nanotechnology, 13, 238 – 244, (2014).
[5] X.L. Ren, D. Chen, X.W. Meng, F.Q. Tang, X.Q. Hou, D. Han, L. Zhang, Zinc oxide nanoparticles/glucose oxidase photoelectrochemical system for the fabrication of biosensor. J. Colloid Interface Sci. 334, 183–187 (2009).
[6] S. Rajeh, A. Mhamdi, K. Khirouni, M. Amlouk and S. Guermazi,
Experiments on ZnO:Ni thin films with under 1% nickel conten,
Optics Laser Techn., 69, 113-121, (2015).
[7] Yuvaraj Sivalingam, Roberto Pizzoferrato, Stefano Paoloni, Pier Gianni
Medaglia, Francesco Basoli, Corrado di Natale, Structural and Optical Correlation of Ni Doped ZnO Nanorods, IEEE International Conference on Nanotechnology, Italy, (2015)
[8] A. Chrissanthopoulos, S. Baskoutas, N. Bouropoulos, V. Dracopoulos, P. Poulopoulos, S.N. Yannopoulos, Synthesis and characterization of ZnO/NiO p–n heterojunctions: ZnO nanorods grown on NiO thin film by thermal evaporation, Photonics and Nanostructures – Fundamentals and Applications, 9, 132–139 (2011).
[9] MijeongSeo, YeonsuJung, DongchanLim, DaehwanCho, YoungjinJeong, Piezoelectric and field emitted properties of controlled ZnO nanorods on CNT yarns, Materials Letters, 92, 177–180, (2013)
[10] G. H. Jain, Synthesis of Ni-doped ZnO Nanorods by Hydrothermal Route and Its Gas Sensing Properties, Sixth International Conference on Sensing Technology (ICST): 2012
[11] Cheng- Liang Hsu, Shoou- jinn Chang, Doped ZnO 1D Nanostructure: Synthesis, properties, and Photodetector Application. Small journal, 10, 4562-4585 (2014)
[12] Yuhua Cai,1 Libin Tang, Jinzhong Xiang, Rongbin Ji, Sin Ki Lai,3 Shu Ping Lau,3 Jun Zhao, Jincheng Kong, and Kai Zhang, High performance ultraviolet photodetectors based on ZnO nanoflakes/PVK heterojunction, Appl. Phys. Lett, 109, 073103 (2016).
[13] P.R.Deshmukh,.YoungkuSohn, Weon GyuShin, Chemical synthesis of ZnO nanorods: Investigations of electrochemical performance and photo-electrochemical water splitting application, Journal of Alloys and Compounds, 711, 573e580, (2017).
[14] R. Saravanan, Vinod Kumar Gupta, V. Narayanan, A. Stephen, Comparative study on photocatalytic activity of ZnO prepared by different methods, Journal of Molecular Liquids 181, 133-141, (2013).
[15] Chih-hung Lin, Shoou-Jinn Chang, Wei-Shou Chen and Ting-Jen Hsueh, Transparent ZnO-nanowire-based device for UV light detection and ethanol gas sensing on c-Si solar cell, RSC Adv, 6, 11146–11150, (2016).
[16] Cheng-Ying Chen. Jose Ramon Duran Retamal. I-Wen Wu. Der-Hsien Lien. Ming-WeiChen. Yong Ding. Yu-Lun Chueh. Chih-I Wu. And Jr-Hau He, Probing Surface Band Bending of Surface-Engineered Metal Oxide Nanowires, ACS NANO, 6, 9366–9372 (2012).
[17] Calarco, R.; Marso, M.; Richter, T.; Aykanat, A. I.; Meijers, R.; v.d. Hart, A.; Stoica, T.; Lüth, H. Size-Dependent Photoconductivity in MBE-Grown GaN-Nanowires. Nano Lett, 5, 981 (2005).
[18] Hong, W. K.; Jo, G.; Kwon, S. S.; Song, S.; Lee, T. Electrical Properties of Surface-Tailored ZnO Nanowire Field-Effect Transistors. IEEE Trans. Electron Devices, 55, 3020–3029 (2008)
[19] Lin, C. H.; Chen, T. T.; Chen, Y. F. Photocurrent Enhancement of SnO2 Nanowires through Au-Nanoparticles Decoration. Opt. Express, 16, 16916–16922 (2008)
[20] Chen, M. W.; Chen, C. Y.; Lien, D. H.; Ding, Y.; He, J. H. Photoconductive Enhancement of Single ZnO Nanowire through Localized Schottky Effects. Opt. Express, 18, 14836–14841, (2010).
[21] Yan-Shi Chen, Jin-Hua Huang, Arrayed CNT–Ni nanocomposites grown directly on Si substrate for amperometric detection of ethanol, Biosensors and Bioelectronics 26, 207–212, (2010),
[22] G.Q. Han, J.H. Shen, X.X. Ye, B. Chen H. Imai, K. Kondoh, W.B. Du, The influence of CNTs on the microstructure and ductility of CNT/Mg composites, Materials Letters 181 300–304, (2016)
[23] Snigdha Rai, Ashi Ikram, Sonal Sahai, Sahab Dass, Rohit Shrivastav, Vibha R. Satsangi, CNT based photoelectrodes for PEC generation of hydrogen: A review, Interrnational Journal of Hydrogen Energy, 423994 – 4006,( 2017 ),
[24] Do Young Kim, Jiho Ryu, Jesse Manders, Jaewoong Lee, and Franky So, Air-Stable, Solution-Processed Oxide p−n Heterojunction Ultraviolet Photodetector, ACS Appl. Mater. Interfaces, 6, 1370−1374, (2014).
[25] S. Safa, Enhanced UV-detection properties of carbon nanotube impregnated ZnO nanourchins, Optik 126 2194–2198, (2015)
[26] J. Alaria, H. Bieber, S. Colis, G. Schmerber, A. Dinia, Enhanced room temperature ferromagnetism in electrodeposited Co-doped ZnO nanostructured thin films by controlling the oxygen vacancy defects, Appl. Phys. Lett. 88, 11, (2006).
[27] Z.-Y. Chen, Z.Q. Chen, B. Zou, X.G. Zhao, Z. Tang, S.J. Wang, J. Defect mediated ferromagnetism in Ni-doped ZnO nanocrystals evidenced by positron annihilation spectroscopy, Appl. Phys, 112, 8, 083905, (2012).
[28] Bappaditya Pal, D. Sarkar, P.K. Giri, Structural, optical, and magnetic properties of Ni doped ZnO nanoparticles: Correlation of magnetic moment with defect density, Applied Surface Science, 356, 804–811 (2015).
[29] Jamil K. Salem, Talaat M. Hammad, Roger R. Harrison, Synthesis, structural and optical properties of Ni-doped ZnO micro-spheres, J Mater Sci: Mater Electron, 24, 1670–1676, (2013).
[30] Cheng-Ying Chen, Ming-Wei Chen, Jr-Jian Ke, Chin-An Lin, José R. D. Retamal, and Jr-Hau He, Surface effects on optical and electrical properties of ZnO nanostructures, Pure Appl. Chem, 82, 11, 2055–2073, (2010).
[31] Vahid Saadattalab, Alireza Shakeri⁎, Hamid Gholami, Effect of CNTs and nano ZnO on physical and mechanical properties of polyaniline composites applicable in energy devices, Progress in Natural Science: Materials International, 26, 517–522, (2016).
[32] Bohr-Ran Huang. Tzu-Ching Lin, A novel technique to fabricate horizontally aligned CNT nanostructure film for hydrogen gas sensing, International journal of hydrogen energy, 36, 15919-15926, (2011).
[33] Yan-Shi Chen, Jin-Hua Huang, Arrayed CNT–Ni nanocomposites grown directly on Si substrate for amperometric detection of ethanol, Biosensors and Bioelectronics 26, 207–212, (2010).
[34] Tzu-Ching Lin, Bohr-Ran Huang, Temperature effect on hydrogen response for cracked carbon nanotube/nickel (CNT/Ni) composite film with horizontally aligned carbon nanotubes, Sensors and Actuators, 185, 548–552, (2013).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top