跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/03 01:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐銘
研究生(外文):Ming Hsu
論文名稱:基於影像檢測方法之3D列印系統 多壓電噴頭自動對位研究
論文名稱(外文):Study of Vision Inspection Methods for Automatic Alignment of Multiple Piezoelectric Heads in 3D Printing System
指導教授:蔡明忠蔡明忠引用關係
指導教授(外文):Ming-Jong Tsai
口試委員:孫沛立郭永麟吳明川蔡明忠
口試日期:2017-07-21
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:自動化及控制研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:65
中文關鍵詞:視覺檢測對位多噴頭校準壓電噴頭3D列印
外文關鍵詞:Vision inspectionAlignmentPiezoelectric printheadPrinthead array3D Printing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:279
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:1
近年噴頭噴印技術隨著積層製造的再次崛起,而衍生出許多不同於紙本印刷的新興應用;由於壓電噴頭的快速噴墨與高精準度等優勢,適合應用於快速打樣與各式直接製造等方法,進而成為在3D列印中材料噴印與黏著劑噴塗成型技術上的主流應用。隨著噴印效率的改善與大型工件的需求,多頭噴印的應用亦更加廣泛;然而,噴頭噴印狀態及多頭對位校正則將是攸關噴印尺寸精確度與品質的關鍵之一。鑑此,本研究藉由開發一影像視覺式演算系統,針對機台噴頭進行離線的平面自動對位校正與噴孔檢測;在噴印初始前產生合宜噴頭配置的對位參數,以改善人力校正所需的時間與對位誤差,進而降低於立體疊層的位置誤差。列印對位圖形作為對位參考,經外部掃描器取像;再透過視覺演算方法擷取特徵,以利計算噴頭對位偏差,並產生噴印系統所需的設定參數。本研究將多噴頭對位方法進行簡化;相對人工對位,不僅降低對位誤差,節省所需的工作時間。並提供具多噴頭之3D列印系統使用者一簡便且快速的噴頭對位整合應用。
Since additive manufacturing technique has raised again in recent years, it has opened a new era for document printing technology as well as modeling and tooling industries by using printheads or nozzles. However, the condition of the printhead is directly yield the finishing quality of the printed part. With the increasing demand of larger scale parts and concerns of printing efficiency, using plurality of printheads for a wider printable area is necessary. Moreover, the major obstacle of printhead arrays is that the correlated stitching and misalignment between multiple printheads will not satisfied the target image dimension. Therefore, the purpose of this thesis attempts to help a printing system to align the printheads and monitor head conditions rapidly. In this thesis, a vision system for multiple printheads alignment and inspection was developed. Machine vision computation was conducted in order to manipulate the alignment configurations for a better image quality. This proposed vision inspection procedure was manipulated by a scanner and vision processing techniques as an offline system. Result of this thesis showed an adequate alignment setting of multiple printheads by image processing algorithms. Compared with manual alignment, the proposed system not only reduces the tedious and complicated processes but also saves lots of time. This thesis may be of importance in explaining the printhead alignment configuration, as well as in providing the printing system and users with a better understanding of multiple printhead operation for a 3D printing system.
摘要 III
ABSTRACT IV
ACKNOWLEDGEMENT V
TABLE OF CONTENT VI
LIST OF FIGURES VIII
LIST OF TABLES X
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Research Objective 2
1.1 Framework of this Thesis 3
CHAPTER 2 BACKGROUND AND LITERATURE REVIEW 4
2.1 Literature Review 4
2.2 Inkjet Technology with Additive Manufacturing 6
2.2.1 Material Jetting 6
2.2.2 Binder Jetting 7
2.3 Overview on Inkjet Technology 9
2.3.1 Piezoelectric Printhead 11
2.3.2 Printhead Principles 12
2.3.3 Application of Printhead Array 15
2.3.4 Printing Driver System 16
2.4 Computer Vision and Image Processing 17
2.4.1 Thresholding Processing 17
2.4.2 Edge Detection 18
2.4.3 Contour Representation 19
2.4.4 Polygonal Approximation 20
CHAPTER 3 SYSTEM INTEGRATION AND METHOD 22
3.1 Printing System 22
3.1.1 System Framework 22
3.1.2 Motion System 25
3.1.3 Print Head System 25
3.1.4 Material Supply System 27
3.2 Vision Inspection System 29
3.2.1 System Architecture 30
3.2.2 Image Acquisition 31
3.2.3 Image Processing 31
3.2.4 Multiple Head Inspection 33
3.2.4.1 Nozzle Inspection 33
3.2.4.2 Head Alignment 33
CHAPTER 4 EXPERIMENTAL RESULTS 37
4.1 Printhead Inspection 37
4.2 Printhead Alignment 41
4.2.1 Image Processed Result 41
4.2.2 Actual Printing Test 45
CHAPTER 5 CONCLUSIONS AND FUTURE WORKS 49
5.1 Conclusions 49
5.2 Future Works 51
REFERENCES 52
1. L.T. Creagh, M. McDonald, and W. Letendre. “Ink Jet Printhead as a precision deposition tool in manufacturing FPDs.” Equipment For Electronic Products Manufacturing, 2004. 8: pp.03.
2. C. Fort Collins and W. Associates, Wohlers report 2017 : 3D printing and additive manufacturing state of the industry : annual worldwide progress report. 2017: Wohlers Associates.
3. J.P. Kruth, M.C. Leu, and T. Nakagawa. “Progress in Additive Manufacturing and Rapid Prototyping.” CIRP Annals - Manufacturing Technology, 1998. 47(2): pp. 525-540.
4. S. Kwon. “Speed measurement of ink droplet by using edge detection techniques.” Measurement, 2009. 42(1): pp. 44-50.
5. O. Brand, G.K. Fedder, C. Hierold, J.G. Korvink, O. Tabata, Inkjet-based Micromanufacturing. 2012: Wiley.
6. D. Jong. “Acoustical and optical characterization of air entrapment in piezo-driven inkjet printheads.” in IEEE Ultrasonics Symposium, 2005. Rotterdam, Netherlands. September, 2005.
7. S. Kwon, “Methods for detecting air bubble in piezo inkjet dispensers.” Sensors and Actuators A: Physical, 2009. 153(1): pp. 50-56.
8. S. Kwon, “Low-cost and high speed monitoring system for a multi-nozzle piezo inkjet head.” Sensors and Actuators A, 2012. 180: pp. 154-165.
9. How 3D Printing Is Changing Auto Manufacturing. [cited 2017 Jun 28]; Available from: http://www.machinedesign.com/3d-printing/how-3d-printing-changing-auto-manufacturing.
10. D. Albertalli, P.A. Parks, S.D. Slade, and R.M. Patterson, Dynamic printhead alignment assembly. 2011, US8061297.
11. J. Moreau, H. Feistenauer, V.N. Hung, and P. Stepanek, Print head pre-alignment systems and methods. 2014, US8851616.
12. K. Chandu, M.J. Stanich, L.M. Ernst, S.R. Vantaram, and C.W. Wu, Print head alignment mechanism. 2014, US8807691.
13. N.G. Makagonov, E.M. Blinova, and I.I. Bezukladnikov. “Development of visual inspection systems for 3D printing.” in 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). Moscow and St. Petersburg, Russia. February, 2017.
14. Z. Jacobsmühlen. “Robustness analysis of imaging system for inspection of laser beam melting systems.” in Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA). 2014.
15. X. Chen. “Model optimization and image compensation in 3D printing.” in Proceedings of the 30th Chinese Control Conference. Yantai, China. July, 2011.
16. K.V. Wong and A. Hernandez, “A review of additive manufacturing.” ISRN Mechanical Engineering. 2012.
17. ASTM, F2792-12 Standard terminology for additive manufacturing technologies. ASTM International, 2012.
18. T.T. Wohlers and W. Associates, Wohlers Report 2015: Additive Manufacturing and 3D Printing State of the Industry : Annual Worldwide Progress Report. 2015: Wohlers Associates.
19. J. Yu-Lim, K. Jung-Su, and L. Min-cheol. “Slicing bitmap generation and patterning technique a SFF system using UV-resin.” in 2007 International Conference on Control, Automation and Systems. Seoul, Korea. October, 2007.
20. J. Yu-Lim, K. Jung-Su, and L. Min-Cheol. “Development of pattern driver for piezo nozzle control of multi-print head in 3D SFFS using UV resin.” in SICE Annual Conference 2007. Kagawa, Japan. September, 2007.
21. K. Jung-Su, K. Dong-Soo, and L. Min-Cheo. “3D printing method of multi piezo head using a photopolymer resin.” in 2007 International Conference on Control, Automation and Systems. Seoul, Korea. October, 2007.
22. M.J. Tsai., “Development of a color photo-curable 3D printing mechatronics system by using multiple piezoelectric heads.” in 2016 International Conference on Machine Learning and Cybernetics (ICMLC). Jeju, Korea. July, 2016.
23. H.B. Dean Snelling. “The effects of 3D printed molds on metal castings.” International solid freeform fabrication symposium. Austin, Texas, USA. 2013. pp. 827-845.
24. E. Bassoli. “3D printing technique applied to rapid casting.” Rapid Prototyping Journal, 2007. 13(3): pp. 148-155.
25. Y. Bai, G. Wagner, and C.B. Williams. “Effect of Bimodal Powder Mixture on Powder Packing Density and Sintered Density in Binder Jetting of Metals.” 2015 Annual International Solid Freeform Fabrication Symposium. Austin, Texas, USA. 2015.
26. I. Gibson, D.W. Rosen, and B. Stucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing. 2009: Springer US.
27. S.F. Pond, Inkjet Technology and Product Development Strategies. 2000: Torrey Pines Research.
28. A. Bietsch, “Rapid functionalization of cantilever array sensors by inkjet printing.” Nanotechnology, 2004. 15(8): pp. 873-880.
29. J.C. Carter, “Fabricating optical fiber imaging sensors using inkjet printing technology: A pH sensor proof-of-concept.” Biosensors and Bioelectronics, 2006. 21(7): pp. 1359-1364.
30. R. Bennett, “Precision industrial ink-jet printing technology for full color PLED display and TFT-LCD manufacturing.” in Proc. of the 3rd International Display Manufacturing Conference, Japan. 2003.
31. J. Heilmann, “The Application of Inkjet for the Printing of PDLC Display Cells.” in NIP & Digital Fabrication Conference. 2005. Society for Imaging Science and Technology.
32. M. Chee, “Accessing genetic information with high-density DNA arrays.” Science, 1996. 274(5287): pp. 610-614.
33. P.W. Cooley, D.B. Wallace, and B.V. Antohe. “Applications of ink-jet printing technology to BioMEMS and microfluidic systems.” in Micromachining and Microfabrication. International Society for Optics and Photonics. 2001.
34. I.N. Chicago, S. Dhar, and G. Evans, 3D Printing of Biological Materials for Drug Delivery and Tissue Engineering Applications. 2015.
35. W. Voit, “Application of inkjet technology for the deposition of magnetic nanoparticles to form micron-scale structures.” IEE Proceedings-Science, Measurement and Technology, 2003. 150(5): pp. 252-256.
36. D.B. Wallace, “Direct write using inkjet techniques.” Direct-Write technologies for rapid prototyping applications-sensors, electronics, and integrated power sources, 2002: pp. 177-227.
37. H.P. Le, “Progress and trends in ink-jet printing technology.” Journal of Imaging Science and Technology, 1998. 42(1): pp. 49-62.
38. R.G. Sweet, “High frequency recording with electrostatically deflected ink jets.” Review of scientific instruments, 1965. 36(2): pp. 131-136.
39. H. Wijshoff, Structure- and fluid-dynamics in piezo inkjet printheads. 2008: Enschede.
40. T. Mimura and S. Sakai, “Micro piezoelectric head technology of color inkjet printer.” Proc. DPP2001, 2001: pp. 230-234.
41. T. Takahashi, “Adaptability of piezoelectric inkjet head. in NIP & Digital Fabrication Conference.” 2001. Society for Imaging Science and Technology.
42. X. Yan, Drop-on-demand inkjet drop formation of dilute polymer solutions. 2010: Georgia Institute of Technology.
43. P. Wang, NUMERICAL ANALYSIS OF DROPLET FORMATION AND TRANSPORT OF A HIGHLY VISCOUS LIQUID, in Mechanical Engineering. 2014, University of Kentucky.
44. S. Kwon, Y.S. Choi, and J.K. Go, “Inkjet jet failures and their detection using piezo self-sensing.” Sensors and Actuators A: Physical, 2013. 201: pp. 335-341.
45. Ricoh Industry Co., L., GEN5 JETPACK INTEGRATION GUIDE
46. L. Shapiro and G.C. Stockman, Computer vision. 2001. ed: Prentice Hall, 2001.
47. N. Otsu, “A threshold selection method from gray-level histograms.” IEEE transactions on systems, man, and cybernetics, 1979. 9(1): pp. 62-66.
48. Y. Zhang and L. Wu, “Optimal multi-level thresholding based on maximum Tsallis entropy via an artificial bee colony approach.” Entropy, 2011. 13(4): pp. 841-859.
49. M. Sezgin, “Survey over image thresholding techniques and quantitative performance evaluation.” Journal of Electronic imaging, 2004. 13(1): p. 146-168.
50. S.E. Umbaugh, Digital image processing and analysis: human and computer vision applications with CVIPtools. 2016: CRC press.
51. K. Dawson-Howe, A Practical Introduction to Computer Vision with OpenCV. 2014: Wiley.
52. J. Canny, “A computational approach to edge detection.” IEEE Transactions on pattern analysis and machine intelligence, 1986(6): pp. 679-698.
53. R.C. Gonzalez and R.E. Woods, Processing. 2002, Prentice-Hall.
54. B. Jahne, Digital image processing. Vol. 4. 2005: Springer.
55. N.A. Jusoh and J.M. Zain, “Application of freeman chain codes: An alternative recognition technique for Malaysian car plates.” arXiv preprint arXiv:1101.1602, 2011.
56. R.O. Duda and P.E. Hart, “Use of the Hough transformation to detect lines and curves in pictures.” Communications of the ACM, 1972. 15(1): pp. 11-15.
57. D.G. Lowe, Method and apparatus for identifying scale invariant features in an image and use of same for locating an object in an image. 2004, US6711293.
58. W. Gander, G.H. Golub, and R. Strebel, “Least-squares fitting of circles and ellipses.” BIT Numerical Mathematics, 1994. 34(4): pp. 558-578.
59. Fujifilm, StarFireTM SG1024/C Printheads Product Manual.
60. Process Overviews Jetted Photopolymer. [cited 2017 Jun 28]; Available from: http://www.custompartnet.com/wu/jetted-photopolymer.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top