跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/09 14:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳元龍
研究生(外文):Yuan-Long Wu
論文名稱:渾沌系統之輸入信號效應、時間延遲設計、初值控制及電路實現
論文名稱(外文):A study of input signal effect, time delay design, initial value control and circuit implementation for chaotic systems
指導教授:楊振雄楊振雄引用關係
指導教授(外文):Cheng-Hsiung Yang
口試委員:蘇順豐陳金聖謝飛虎蔡明忠郭永麟楊振雄
口試日期:2017-07-19
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:自動化及控制研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:85
中文關鍵詞:渾沌系統輸入信號效應初始值控制時間延遲類比電路
外文關鍵詞:Chaotic systemInput signal effectInitial value controlTime-delayAnalog circuit
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
渾沌系統對於訊號設計和訊號產生,提供了豐富的機制,在通信系統和信號處理有應用的潛力。由於渾沌信號通常是寬頻的,類似雜訊的,難以預測的,因此在訊號傳送過程中可用於遮罩訊號,在展頻系統中可用於調變波形,在系統中可以有很多實際的應用,例如安全資料通信、遮蔽訊息信號、擴展數據序列或用於產生隨機信號。
渾沌系統因其複雜性、不可預測性及系統的變化對初始條件的選取非常敏感,近年來有相當多將渾沌系統應用於訊息加密的研究。為強化渾沌系統的訊息加密應用,本論文提出輸入信號對渾沌系統的影響、控制渾沌系統初始值的方法、時間延遲渾沌系統的快速設計方式、類比電路實現及實驗結果印證。
Chaotic systems provide a rich mechanism for signal design and generation, with potential applications to communications and signal processing. Because chaotic signals are typically broadband, noise-like, and difficult to predict, they can be used in various contexts for masking information bearing waveforms. They can also be used as modulating waveforms in spread spectrum systems. This can be useful in many practical circumstances like securing communication channels, masking signals, spreading data sequence, or for generating random signals.
For the sake of complexity, unpredictability and exceedingly sensitive to initial conditions in the chaotic systems, there are many studies for information encryption of chaotic systems. Enhancing the security in information encryption of chaotic systems, this thesis proposes the effects of input signals for chaotic systems, initial value control for chaotic systems, a rapid way to design time-delay chaotic systems, analog circuit implementation and experiment results verifying.
摘要 I
Abstract II
致謝 III
List of Figures V
List of Tables XII

Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Organization and Main Tasks 2
Chapter 2 The Effects of Input Signals for Chaotic Systems 3
2.1 Chaotic System 3
2.2 Fractional-Order System 17
Chapter 3 Initial Value Control Circuit for Chaotic Systems 24
3.1 Chaotic System 24
3.2 Fractional-Order System 34
Chapter 4 Circuits and Chips Implementation for Chaotic Systems 37
4.1 Chaotic System 37
4.2 Hyper-Chaotic System 45
4.3 Initial Value Tuning via The Pulse-Width Control Circuit 54
Chapter 5 Conclusions and Future Works 58
5.1 Conclusions 58
5.2 Future Works 59

Appendix: A Rapid Way to Build Time-Delay Chaotic Systems 60
A.1 Chaotic System 60
A.2 Fractional-Order System 61

References 63
Publication List 70
[1] E. N. Lorenz, “Deterministic non-periodic flows,” Journal of the Atmospheric Science, vol. 20, no. 2, pp. 130–141, 1963.
[2] S. Li, Y. Li, B. Liu, and T. Murray, “Model-free control of Lorenz chaos using an approximate optimal control strategy,” Communications in Nonlinear Science and Numerical Simulation, vol. 17,no. 12, pp. 4891–4900, 2012.
[3] H.-K. Chen, “Synchronization of two different chaotic systems:a new system and each of the dynamical systems Lorenz, Chenand L¨u,” Chaos, Solitons and Fractals, vol. 25, no. 5, pp. 1049–1056,2005.
[4] Q. Bi and Z. Zhang, “Bursting phenomena as well as the bifurcationmechanism in controlled Lorenz oscillator with two time scales,” Physics Letters A, vol. 375, pp. 1183–1190, 2011.
[5] F. Oumlzkaynak and A. B. Oumlzer, “A method for designing strong S-Boxes based on chaotic Lorenz system,” Physics Letters A, vol. 374, no. 36, pp. 3733–3738, 2010.
[6] S. Y. Li, C. H. Yang, S. A. Chen, L. W. Ko, and C. T. Lin, “Fuzzy adaptive synchronization of time-reversed chaotic systems via a new adaptive control strategy,” Information Sciences, vol. 222, no. 10, pp. 486–500, 2013.
[7] A. Mamandi, M. H. Kargarnovin, and S. Farsi, “Dynamic analysis of a simply supported beam resting on a nonlinear elastic foundation under compressive axial load using nonlinear normal modes techniques under three-to-one internal resonance condition,” Nonlinear Dynamics, vol. 70, no. 2, pp. 1147–1172, 2012.
[8] S. Y. Li and Z. M. Ge, “Generating tri-chaos attractors with three positive lyapunov exponents in new four order system via linear coupling,” NonlinearDynamics, vol. 69,no. 3, pp.805–816,2012.
[9] C.-H. Yang, T.-W. Chen, S.-Y. Li, C.-M. Chang, and Z.-M. Ge,“Chaos generalized synchronization of an inertial tachometer with new Mathieu-Van der Pol systems as functional system by GYC partial region stability theory,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 3, pp.1355–1371, 2012.
[10] M. S. H. Chowdhury, I. Hashim, S. Momani, and M. M.Rahman, “Application of multistage homotopy perturbation method to the chaotic Genesio system,” Abstract and Applied Analysis, vol. 2012, Article ID 974293, 10 pages, 2012.
[11] Y. Horikawa and H. Kitajima, “Quasiperiodic and exponential transient phase waves and their bifurcations in a ring of unidirectionally coupled parametric oscillators,” Nonlinear Dynamics, vol. 70, no. 2, pp. 1079–1094, 2012.
[12] A. Freihat and S.Momani, “Adaptation of differential transform method for the numeric-analytic solution of fractional-order R¨ossler chaotic and hyperchaotic systems,” Abstract and Applied Analysis, vol. 2012,Article ID 934219, 13 pages, 2012.
[13] Z.-M. Ge and S.-Y. Li, “Chaos generalized synchronization of new Mathieu-Van der Pol systems with new Duffing-Van der Pol systems as functional systemby GYC partial region stability theory,” Applied Mathematical Modelling, vol. 35, no.11, pp.5245–5264, 2011.
[14] Z.-M. Ge and S.-Y. Li, “Chaos control of new Mathieu-Van der Pol systems with new Mathieu-Duffing systems as functional system by GYC partial region stability theory,” Nonlinear Analysis:Theory,Methods&Applications, vol. 71,no. 9, pp.4047–4059, 2009.
[15] C. Yin, S.-M. Zhong, and W.-F. Chen, “Design of sliding mode controller for a class of fractional-order chaotic systems,” Communications in Nonlinear Science and Numerical Simulation, vol.17, no. 1, pp. 356–366, 2012.
[16] J. Zhao, “Adaptive Q-S synchronization between coupled chaotic systems with stochastic perturbation and delay,” Applied Mathematical Modelling, vol. 36, no. 7, pp. 3312–3319, 2012.
[17] M. Villegas, F. Augustin, A. Gilg, A. Hmaidi, and U. Wever,“Application of the polynomial chaos expansion to the simulation of chemical reactors with uncertainties,” Mathematics and Computers in Simulation, vol. 82, no. 5, pp. 805–817, 2012.
[18] M. F. P´erez-Polo and M. P´erez-Molina, “Saddle-focus bifurcation and chaotic behavior of a continuous stirred tank reactor using PI control,” Chemical Engineering Science, vol. 74, no. 28,pp. 79–92, 2012.
[19] J. Jiao and L. Chen, “The genic mutation on dynamics of a predator-prey system with impulsive effect,” Nonlinear Dynamics,vol. 70, no. 1, pp. 141–153, 2012.
[20] T. Wang, N. Jia, and K. Wang, “A novel GCM chaotic neural network for information processing,” Communications in Nonlinear Science and Numerical Simulation, vol. 17,no. 2, pp. 4846–4855, 2012.
[21] N. X. Quyen, V. V. Yem, and T.M.Hoang, “A chaotic pulse-time modulation method for digital communication,” Abstract and Applied Analysis, vol. 2012,Article ID 835304, 15 pages, 2012.
[22] T. Wang, N. Jia, and K. Wang, “A novel GCM chaotic neural network for information processing,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 12, pp.4846–4855, 2012.
[23] S. Wang and H. Yao, “The effect of control strength on lag synchronization of nonlinear coupled complex networks,”Abstract and Applied Analysis, vol. 2012, Article ID 810364, 11pages, 2012.
[24] J. L.Mata-Machuca, R.Mart´ınez-Guerra, R.Aguilar-L´opez, and C. Aguilar-Iba˜nez, “A chaotic system in synchronization and secure communications,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 4, pp. 1706–1713, 2012.
[25] Y.-Y. Hou, H.-C. Chen, J.-F. Chang, J.-J. Yan, and T.-L. Liao,“Design and implementation of the Sprott chaotic secure digital communication systems,” Applied Mathematics and Computation,vol. 218, no. 24, pp. 11799–11805, 2012.
[26] Shih-Yu Li,Cheng-Hsiung Yang,Chin-Teng Lin,Li-Wei Ko, and Tien-Ting Chiu, “Chaotic Motions in the Real Fuzzy Electronic Circuits, ”Abstract and Applied Analysis, vol. 2013, Article ID 875965, 8pages, 2013.
[27] İHsan Pehlivan, YıLmaz UyaroğLu, “A new 3D chaotic system with golden proportion equilibria: Analysis and electronic circuit realization, ” Computers and Electrical Engineering, vol. 38,no.6, pp. 1777-1784, 2012.
[28] H. Haken, “At least one Lyapunov exponent vanishes if the trajectory of an attractor does not contain a fixed point, ” Phys. Lett. A, vol. 94, pp. 71–72, 1983.
[29] M. P. Kennedy, “Chaos in the colpitts oscillator,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 41, no. 11, pp. 771–774, 1994.
[30] Zheng-Ming Ge , Cheng-Hsiung Yang, “Hyperchaos of four state autonomous system with three positive Lyapunov exponents, ” Phys. Lett. A, vol.373, pp. 349–353, 2009.
[31] Xiaobing Zhou, Yue Wu, Yi Li, Hongquan Xue, “ Adaptive control and synchronization of a new modified hyperchaotic Lü system with uncertain parameters,” Chaos, Solitons and Fractals, vol. 39, no. 5, pp. 2477–2483, 2009.
[32] Guangyi Wang,Xun Zhang,Yan Zheng,Yuxia Li, “A new modified hyperchaotic Lü system,” Phys. Lett. A, vol. 371, no. 2, pp. 260-272,2006.
[33] Barbara Cannas,Silvano Cincotti, “Hyperchaotic behaviour of two bi-directionally coupled Chua's circuits, ” International Journal of Circuit Theory and Applications,vol. 30, no. 6, pp. 625–637,2002.
[34] Jin-Yuan Hsieh , Chi-Chuan Hwang , An-Pei Wang,Woei-Jong Li, “Controlling hyperchaos of the Rossler system, ” International Journal of Control, vol. 72, pp. 882-886 ,1999.
[35] Qingdu Li, Song Tang, Xiao-Song Yang, “Hyperchaotic set in continuous chaos–hyperchaos transition, ” Commun Nonlinear Sci Numer Simulat,vol. 19, pp. 3718-3734, 2014.
[36] T. Matsumoto, L. Chua, K. Kobayashi, “Hyper chaos: Laboratory experiment and numerical confirmation, ” IEEE Transactions on Circuits and Systems, vol. 33, no. 11, pp. 1143 – 1147,1986.
[37] Guoyuan Qi, Michaël Antonie van Wyk, Barend Jacobus van Wyk, Guanrong Chen, A new hyperchaotic system and its circuit implementation ,Chaos, Solitons and Fractals,vol. 40, no. 5, pp. 2544–2549, 2009.
[38] Moez Feki, “An adaptive chaos synchronization scheme applied to secure communication, ” Chaos, Solitons and Fractals, vol. 18, no. 1, pp. 141–148, 2003.
[39] Chuandong Li, Xiaofeng Liao, Kwok-Wo Wong, “ Lag synchronization of hyperchaos with application to secure communications, ” Chaos, Solitons and Fractals, vol. 23, no. 1, pp. 183–193, 2005.
[40] Diyi Chen, Chengfu Liu, Cong Wu, Yongjian Liu, Xiaoyi Ma, Yujing You, “A New Fractional-Order Chaotic System and Its Synchronization with Circuit Simulation, ” Circuits, Systems & Signal Processing, vol. 31 ,no. 5, pp.1599-1613,2012.
[41] A. M. A. El-Sayed, E. Ahmed, and H. A. A. El-Saka, “Dynamic properties of the fractional-order logistic equation of complex variables,” Abstract and Applied Analysis, vol. 2012, Article ID 251715, 12 pages, 2012.
[42] H. Y. Jia, Z. Q. Chen, and G. Y. Qi, “Chaotic Characteristics Analysis and Circuit Implementation for a Fractional-Order System, ” IEEE Transactions on Circuits and Systems I: Regular Papers,vol.61,no.3,pp. 845 – 853,2014.
[43] T. T. Hartley, C. F. Lorenzo, and H. K. Qammer, “Chaos in a fractional order Chua’s system,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 42, no. 8, pp. 485–490, Aug. 1995.
[44] C. G. Li and G. R. Chen, “Chaos and hyperchaos in the fractional-order Rossler equations,” Physica A, vol. 341, pp. 55–61, Oct. 2004.
[45] I. Grigorenko and E. Grigorenko, “Chaotic dynamics of the fractional Lorenz system,” Phys. Rev. Lett., vol. 91, no. 3, pp.034101-1–034101-4, Jul. 2003.
[46] O. Heaviside, Electromagnetic Theory. New York, NY, USA:Chelsea, 1971.
[47] M. Ichise, Y. Nagayanagi, and T. Kojima, “An analog simulation of noninteger order transfer functions for analysis of electrode processes,” J. Electroanal. Chem., vol. 33, pp. 253–265, 1971.
[48] R. L. Bagley and R. A. Calico, “Fractional order state equations for the control of viscoelastically damped structures,” J. Guid. Contr, Dyn.,vol. 14, no. 2, pp. 304–311, 1991.
[49] N. Sugimoto, “Burgers equation with a fractional derivative: Hereditary effects on nonlinear acoustic waves,” J. Fluid Mech., vol. 225, pp.631–653, Apr. 1991.
[50] P. J. Torvik and R. L. Bagley, “On the appearance of the fractional derivative in the behavior of real material,” J. Appl. Mechanics: Trans.ASMF, vol. 51, no. 2, pp. 294–298, Jun. 1984.
[51] W. M. Ahmad and J. C. Sprott, “Chaos in fractional-order autonomous nonlinear systems,” Chaos, Solitons & Fractals, vol. 16, pp. 339–351,Mar. 2003.
[52] X. R. Chen, C. X. Liu, F. Q. Wang, and Y. X. Li, “Study on the fractional-order Liu chaotic system with circuit experiment and its control,”Acta Physica. Sinica., vol. 57, no. 3, pp. 1416–1422, Mar. 2008.
[53] L. Stenflo, “Generalized Lorenz equations for acoustic-gravity waves in the atmosphere, ” Physica Scripta, vol. 53, no. 1, pp. 83–84, 1996.
[54] Cheng-Hsiung Yang and Cheng-LinWu, “Nonlinear dynamic analysis and synchronization of four dimensional Lorenz–Stenflo system and its circuit experimental implementation,” Abstract and Applied Analysis, vol. 2014, Article ID 213694, 17 pages.,2014.
[55] W. Hahn, The Stability of Motion, Springer Verlag, New York, 1967.
[56] X.Wang and G.A.Chen, “A chaotic system with only one stable equilibrium,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 3, pp. 1264–1272, 2012.
[57] Y. Liu, “Circuit implementation and finite-time synchronization of the 4D Rabinovich hyperchaotic system, ” Nonlinear Dynamics, vol. 67, no. 1, pp. 89–96, 2012.
[58] A. G. Radwan, A. M. Soliman, and A. L. El-Sedeek, “MOS realization of the double-scroll-like chaotic equation, ” IEEE Transactions on Circuits and Systems I: FundamentalTheory and Applications, vol. 50, no. 2, pp. 285–288, 2003.
[59] A. Abooee, H. A. Yaghini-Bonabi, and M. R. Jahed-Motlagh, “Analysis and circuitry realization of a novel three-dimensional chaotic system, ” Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 5, pp. 1235–1245, 2013.
[60] Mingjun Wang, “Controlling Liu Chaotic System with Feedback Method and Its Circuit Realization, ” International Journal of Modern Nonlinear Theory and Application, vol.5, no.1, pp.40-47, 2016.
[61] Yuan-Long Wu, Cheng-Hsiung Yang, and Chang-Hsi Wu, “Design of initial value control for modified Lorenz-Stenflo system,” Mathematical Problems in Engineering, vol.2017, Article ID 8424139, 2017.
[62] Yuan-Long Wu ,Cheng-Hsiung Yang, Yu-Sheng Li, and Chang-Hsi Wu, “Nonlinear dynamic analysis and chip implementation of a new chaotic oscillator,” in IEEE ICNSC 2015, vol.1, pp.554-559, 2015.
[63] D. C. Hamill, “Learning about chaotic circuits with Spices,” IEEE Transactions on Education, vol. 36, pp. 28–35, 1993.
[64] S. Y. Hsiao and C. Y. Wu, “A 1.2V CMOS four quadrant analog multiplier,”in Proc.IEEE Int. Circuits Syst.Symp., vol.1, pp.241-244, 1997.
[65] Behzad Razavi,Design of Analog CMOS Integrated Circuits:Electrical Engineering Series,Boston, MA :McGraw-Hill, c2001.
[66] J.L , G.Chen, “ A New Chaotic Attractor Coined, ” International Journal of Bifurcation and Chaos, vol.12, no.3, pp.659-661, 2002.
[67] Yuan-Long Wu ,Cheng-Hsiung Yang, and Chang-Hsi Wu, “Chip implementation of a new hyperchaotic oscillator,” Electronics Letters, vol. 53, no. 4, pp. 226 – 228, 2017.
[68] Chang-Hsi Wu, Hao-We Chen, Yuan-Long Wu and Cheng-Hsiung Yang, “Design of a Chaotic Signal Generator with Initial Value Tuning via the Pulse-Width Control Circuit, ” The 2nd International Conference on Electronics Engineering and Informatics (ICEEI 2017), Beijing,China, June 25-27,2017.
[69] Arturo Buscarino, Luigi Fortuna, Mattia Frasca, and Gregorio Sciuto, “Design of Time-Delay Chaotic Electronic Circuits, ” IEEE Transactions on Circuits and Systems I,vol.58, no.8, pp.1888 – 1896,2011.
[70] Y. Xia, M. Fu, and P. Shi, “Analysis and synthesis of dynamical systems with time-delays,” in Lecture Notes in Control and Information Sciences. New York: Springer, 2009.
[71] K. Ikeda and K. Matsumoto, “High-dimensional chaotic behavior in systems with time-delayed feedback,” Physica D, vol. 29, pp. 223–235,1987.
[72] M. W. Lee, L. Larger, and J. P. Goedgebuer, “Transmission system using chaotic delays between light waves,” IEEE J. Quantum Electron.,vol. 39, pp. 931–935, 2003.
[73] D. Ghosh, A. R. Chowdhury, and P. Saha, “Multiple delay Rössler system—Bifurcation and chaos control,”Chaos, Solit. Fractals, vol.35, pp. 472–485, 2008.
[74] W. Wischert, A. Wunderlin, and A. Pelster, “Delay-induced instabilities in nonlinear feedback systems,” Phys. Rev. E, vol. 49, pp. 203–219,1994.
[75] J. C. Sprott, “A simple chaotic delay differential equation,” Phys. Lett. A, vol. 366, pp. 397–402, 2007.
[76] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological control system,” Science, vol. 197, pp. 287–289, 1977.
[77] C. Sun, Y. Lin, and M. Han, “Stability and Hopf bifurcation for an epidemic disease model with delay,” Chaos, Solitons and Fractals, vol.30, pp. 204–216, 2006.
[78] M. Dhamala, V. K. Jirsa, and M. Ding, “Enhancement of neural synchrony by time delay,” Phys. Rev. Lett., vol. 92, p. 074104, 2004.
[79] K. Pyragas, “Continuous control of chaos by self-controlling feedback,”Phys. Lett. A, vol. 170, pp. 421–428, 1992.
[80] E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Phys. Rev. Lett., vol. 64, pp. 1196–1199, 1990.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top