跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/03/20 17:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱楗洺
研究生(外文):Jian-Ming Chiu
論文名稱:利用溶劑熱法製備銅鋅錫硫四元化合物奈米結構負極材料應用於高效率鋰離子電池之研究
論文名稱(外文):Synthesis of CuxZnySnzS Nanostructures using Solvothermal Process for Applications on High-Performance Li-ion Battery Anode Material
指導教授:戴龑
指導教授(外文):Yian Tai
口試委員:陳貴賢林麗瓊方家振蔡大翔王復民
口試委員(外文):Kuei-Hsien ChenLi-Chyong ChenChia‐Chen FangDah-Shyang TsaiFu-Ming Wang
口試日期:2017-06-27
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:148
中文關鍵詞:鋰離子電池銅鋅錫硫奈米環境網長效測試倍率性測試
外文關鍵詞:Lithium ion batteryCZTSNano-geogridStabilityRate capability test
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要將銅鋅錫硫(CZTS)四元材料於能源元件上之應用,能源材料包括能源轉換與能源儲能材料。然而尋找製程便宜簡單,易調控四元比例及奈米結構的製程條件以及材料本身具有化學及物理的穩定性為主要的開發的目標。故本論文以溶劑熱合成法經由改變操作條件來使其製程參數最適化(e.g. 溫度, 硫之比例, 反應步驟及時間)。接著以鋰離子電池為主要研究系統,利用各種分析儀器(臨場及非臨場)之解析能力探討銅鋅錫硫(CZTS)材料於電解液系統中穩定性及高效能。
第一部份為銅鋅錫硫作為電極材料之鑑定及穩定性探討,研究主要是藉由溶劑熱合成法製備無機材料,其必需具有良好的結晶性、反應穩定性和表面親疏水性;在此我們藉由引進奈米環境網於我們材料中;此概念來自於生態工法的修護方法,製備其我們的銅鋅錫硫電極材料,而成長使用的溶劑為乙二醇。當基板經由的奈米環境網修飾可以使材料具有較佳的機械以及化學穩定性等特性。主要由於成長的奈米結構本身具有孔洞使其不論是液體的流動或者氣體的產生的應力,可經由孔洞分散其外在的影響,另外使用乙二醇為我們成長之溶劑可使表面具親水性,使得應用於電解液為極性溶劑有較佳的潤濕性。
第二部份為利用上述的優點,當此結構製備電極材料於鋰離子電池中,在長效的測試時結果可得到, 經過修飾後的基板經過100 cycles後結構幾乎無變化,證明了修飾後的電極材料具有較佳的化學穩定性,另外最適化鋰電池負極材料經由長效測試及倍率性測試都可獲得較佳的結果(Specific capacity of 1400 mAhg-1 with retention of about 100% after 450 cycles)。而這部分經由非臨場的XPS分析技術驗證可得到由於金屬(銅及鋅)的導入於二硫化錫的系統中,有效使得二價的銅離子易完全的氧化還原,並不會造成一價的銅離子溢於電解液中造成電池穩定度下降,另一方面由非臨場的XRD分析技術驗證銅鋅錫硫特殊結構以及觸媒特性使得當經過長時間的充放電,反應過後其負極材料還具有結晶性,此跟現今負極材料(矽或錫)相比有其優異性於鋰離子電池中。
最後由於使用此方法不僅可以長在不同的基板上使其應用面較廣,另外本身具有較佳的光觸媒特性,當我們將材料製備於可撓式的碳材或者金屬箔亦或者是透明導電玻璃上應用於水分解中以及還原二氧化碳的結果中可得到不錯的產氫電流及還原產物選擇率,在初試結果中可得到當Voc為-0.27時可得到產氫電流為-1.53 mAcm-2,在此論文不僅僅探討了奈米環境網對於結構以及元件穩定性的影響也希望透過此概念能夠在未來的能源相關產業都能夠有所發揮及斬獲。
Nowadays CZTS is widely used as absorber layer or electrode material for a variety of applications. Despite its popularity, there is still a need to look for a cheaper and easier way to obtain CZTS with its unique structures and better chemical and physical stability. In this study, the solvothermal process was used to synthesize the CZTS from a low-cost and abundant source viz. copper, zinc, tin and sulfur precursor. The reaction pathway was optimized by monitoring the process and observing the various effects of the variable parameters such as temperature, sulfur ratio, reaction time and step. Using various analytical tools, a better understanding of the reaction process is highlighted. The tuning of sulfur ratio i.e., from 2112 to 2116 in the solvothermal process allowed us to synthesize different CZTS nanostructures for energy applications. For higher sulfur ratio, CZTS could easily aggregate to form nanosphere cluster. Finally, we found that the optimized sulfur ratio was 2115 that could form the CZTS nanostructures.
Since most of the electrode materials including CZTS known to require better crystallinity, reaction stability and surface wettability for the electrolyte system. Ecological engineering methods (EEM) inspired nanostructures offers great promises in the fabrication of electrode materials that are difficult to engineer through the conventional approaches. Here, we utilize this concept for the synthesis of hierarchical porous single crystalline CZTS nanowall arrays (NWAs) on arbitrary substrates. The CZTS nanocrystals with hierarchical structured porous material showed the hydrophilic behavior that helps CZTS nanocrystals to be used in electrolyte system such as dye-sensitized solar cells with the prepared counter electrode, lithium-ion batteries with a high specific capacitance and outstanding cycling stability.
Further we investigating CZTS nanowalls, a cascade mechanism are highlighted in improving the lithium ion storage performance of transition metal sulfides anodes. An ultrahigh and stable capacity, 1400 mAh g-1 at a current density of 1000 mA g-1, was achieved over 400 cycles; besides, the rate capability of CZTS nanowalls is also remarkable, which can be charged within 1 min and deliver a capacity of 495 mAg g-1. The special lithium ion storage mechanism in mixed metal chalchogenide is proposed in this dissertation. In short, a combinational redox reaction from metal sulfides to lithium sulfides, highly porous nanosturctures and proper composition of transition metals lead to excellent and stable lithium ion storage performance. Our results and proposed strategies provide useful guidance and open an opportunity to the design of anode materials for next generation lithium ion batteries
Finally, the CZTS nanostructures could be extended its application to the photocatalytic activity system due to the superior light harvesting behavior. Initial photoelectrochemical water splitting data have shown that a photocurrent density of -1.53 mAcm-1 at -0.27 V versus RHE under illumination of AM 1.5 and catalytic reduction of carbon dioxide (CO2) for the sunlight-driven conversion of CO2 into alcohol under irradiation by AM 1.5 simulated sunlight. Such a highly integrated template and ligand free electrodes made by directly growing photoactive CZTS porous nanowalls on arbitrary substrates. The CZTS NW would be expected to give a great impetus to applicable to any kind of electrodes and will open the door to the new possibility that make commercially viable attractive energy technologies.
Chinese Abstract (中文摘要) III
Abstract V
Acknowledgement VII
Table of Contents IX
List of Abbreviations XIII
List of Figures XIV
List of Tables XIX
Chapter 1 Introduction and Motivation 1
1.1 Preface 1
1.1.1 Global Energy Challenge 1
1.1.2 The Need of Electrochemical Energy Storage (EES) System 2
1.1.3 The Choices of Batteries 4
1.2 General Introduction of Lithium Ion Battery (LIB) 5
1.2.1 Basic Principle of Lithium Ion Battery 5
1.2.2 Major Configuration of Lithium Ion Battery 6
1.3 Cathode Material (Positive electrode) in Lithium Ion Battery 8
1.4 Anode Material (Negative electrode) in Lithium Ion Battery 9
1.4.1 Intercalation/de-intercalation materials 11
1.4.2 Alloy/de-alloy materials 11
1.4.3 Conversion materials 12
1.5 Electrolyte in Lithium Ion Battery 14
1.6 Copper Zinc Tin Sulfide (CZTS) as an Anode Material 15
1.6.1 Properties of CZTS 15
1.6.2 Crystal Structure of CZTS 16
1.7 Overview Dissertation 18
1.7.1 The Reason Why CZTS 18
1.7.2 Issues with CZTS 18
1.7.3 Aim and Objective of the Study 19
1.7.4 Dissertation Structure . 20
Chapter 2 Background, Concepts and Literature Review 22
2.1 Development of Synthetic Transition Metal Chalcogenides Methods 22
2.1.1 Crucial parameters governing solvo-thermal reactions 24
2.1.1.1 Chemical parameters 24
2.1.1.2 Physical parameters 25
2.2 Degradation Study and Mechanism of TMCs in Lithium Ion Battery 26
2.2.1 Lithiation Mechanism 26
2.2.2 Electrolyte compatibility (Effect of polysulfides shuttling) 27
2.2.3 Voltage hysteresis 29
2.2.4 Unambiguous excess capacity 30
2.3 Engineering TMCs for Lithium Ion Battery 31
2.3.1 Systematic evolution in structure and morphology 32
2.3.2 Carbon-Materials-Supported Electrode Materials 33
2.3.3 Depositing Passivation Layers 34
2.4 Geogrid-Inspired Technique 36
Chapter 3 Methodology 39
3.1 Experimental Section 39
3.1.1 Materials 39
3.1.2 Fabrication of CZTS Nanogeogrid 39
3.1.3 Fabrication of the CZTS nanowall with and without nanogeogrid 40
3.2 Instrumentation for Characterization 41
3.2.1 X-ray Diffraction analysis (XRD) 41
3.2.1.1 Experimenatal Considerations 42
3.2.2 Confocal Micro-Raman Spectroscopy 43
3.2.2.1 Metal Sulfide Material 44
3.2.2.2 Experimenatal considerations 44
3.2.3 Scanning Electron Microscope with EDS analysis 45
3.2.4 Transmission Electron Microscope with SAED and EDS analysis 46
3.2.4.1 Experimenatal considerations 47
3.2.5 X-ray Photoelectron Spectrometer (XPS) 47
3.2.5.1 Experimenatal considerations 48
3.2.6 Brunauer–Emmett–Teller (BET) 48
3.2.7 Nanoindenter setup 49
3.3 Battery Test and Electrochemical Setup . 50
3.3.1 Battery Test 50
3.3.2 Cyclic Voltammetry (CV) 52
3.3.3 Electrocheical Impedance Spectroscopy (EIS) 53
Chapter 4 Results and Discussion 55
4.1 Synthesis and Optimization of CZTS Nanostructures for understanding its growth mechanism and Suitable application in Lithium ion Battery 55
4.1.1 Fabrication of CZTS NWD and NOD 55
4.1.2 Growth Mechanism study 60
4.1.2.1 The rationality of choosing precursor ratio of C:Z:T:S for the growth of nanogeogrid and nanowall 60
4.1.2.2 Formation mechanism of CZTS NWD and NOD 62
4.1.3 Mechanical and Electrochemical Study 66
4.1.4 BET Study (Nitrogen adsorption–desorption isotherms) 71
4.1.5 Summary 72
4.2 CZTS NWD as Anode Material for Lithium-Ion Batteries 72
4.2.1 Introduction 72
4.2.2 Lithium-Ion Batteries Behavior 75
4.2.3 Structure and Properties of Electrode Materials after Cycling 81
4.2.3.1 Structure Evolution of CZTS nanowalls 82
4.2.3.2 Ex situ XPS analyses 85
4.2.4 Mechanistic Insights of CZTS Nanowall in LIBs 88
4.2.5 Summarys 91
Chapter 5 Conclusion and Perspectives 94
5.1 Conclusion 94
5.2 Perspectives 96
5.2.1 Low-temperature electrochemical performance in LIBs 96
5.2.2 Wearable photoelectric devices 97
5.2.3 Counter electrode material in DSSCs 98
5.2.4 Photocathode material in HER (Hydrogen evolotion reaction) 100
5.2.5 Photocatalyst for CO2 reduction 102
Reference 104
Appendix 123
Curriculum Vitae 125
Chapter 1
1. U.S.E.I. Administration, Annual Energy Outlook (U.S. Department of Energy, Washington, DC, 2013).
2. Plug-in Car Grid Load. (2009, June 6). Retrieved from http://celticsolar.blogspot.tw/2009/06/plug-in-transportation-can-grid-take-it.html
3. Neural Energy consulting (2015, July). Retrieved from http://www.neuralenergy.info/2014/07/energy-storage.html
4. STATE OF THE ART OF LITHIUM BATTERY RESEARCH: MARKET OUTLOOK AND RESEARCH REVIEWS (2015, Oct 13). Retrieved from http://www.msesupplies.com/blogs/news/53646980-state-of-the-art-of-lithium-battery-research-market-outlook-and-research-reviews.
5. Lithium-Ion Batteries for Hybrid Electric Vehicles (2016). Retrieved from http://www.hitachi.com/environment/showcase/solution/mobility/lithiumion.html
6. Wong, D.P. (2013). Synthesis of Silicon-based Nanomaterials using Magnesiothermic Reduction Process for Energy-related Applications (Doctoral dissertation).
7. THE COST COMPONENTS OF A LITHIUM ION BATTERY (2016, Jan 11). Retrieved from http://qnovo.com/82-the-cost-components-of-a-battery/
8. Marom, R., Amalraj, S. F., Leifer, N., Jacoba D. Aurbacha, D. “A review of advanced and practical lithium battery materials” J. Mater. Chem., 2011,21, 9938-9954.
9. Whittingham, M.S. “Lithium batteries and cathode materials” Chem Rev 2004,104, 4271–4301
10. Mizushima, K., Jones, P.C., Wiseman, P.J., Goodenough, J.B. “LixCoO2 (011. Julien, C. M., Mauger, A., Zaghib, K., Groult, H. “Comparative Issues of Cathode Materials for Li-Ion Batteries” Inorganics., 2014, 2, 132-154.
12. Xu, B., Qian, D., Wang, Z., Meng, Y. S. “Recent progress in cathode materials research for advanced lithium ion batteries” Mater. Sci. Eng., R., 2012, 73, 51-65.
13. Goriparti, S., Mielea, E., Angelis, F. D., Fabrizio, E. D., Zaccaria, R. P. Capiglia, C. “Review on recent progress of nanostructured anode materials for Li-ion batteries” J. Power Sources, 2014,257, 421-443.
14. K. Persson, V.A. Sethuraman, L.J. Hardwick, Y. Hinuma, Y.S. Meng, A. van der Ven, V. Srinivasan, R. Kostecki, G. Ceder, “Lithium Diffusion in Graphitic Carbon” J. Phys. Chem. Lett., 2010, 1, 1176-1180.
15. H. Fujimoto, K. Tokumitsu, A. Mabuchi, N. Chinnasamy, T. Kasuh, “The anode performance of the hard carbon for the lithium ion battery derived from the oxygen-containing aromatic precursors” J. Power Sources, 2010,195, 7452-7456.
16. C.M. Schauerman, M.J. Ganter, G. Gaustad, C.W. Babbitt, R.P. Raffaelle,B.J. Landi, “Recycling single-wall carbon nanotube anodes from lithium ion batteries” J. Mater. Chem., 2012, 22, 12008-12015.
17. J. Hou, Y. Shao, M.W. Ellis, R.B. Moore, B. Yi, “Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries” Phys. Chem. Chem. Phys, 2011, 13, 15384-15402.
18. A.L.M. Reddy, S.R. Gowda, M.M. Shaijumon, P.M. Ajayan, “Hybrid Nanostructures for Energy Storage Applications” Adv. Mater., 2012, 24, 5045-5064.
19. M.T. McDowell, S.W. Lee, J.T. Harris, B.A. Korgel, C. Wang, W.D. Nix, Y. Cui, “In Situ TEM of Two-Phase Lithiation of Amorphous Silicon Nanospheres” Nano Lett., 2013, 13, 758-764.
20. V. Etacheri, R. Marom, R. Elazari, G. Salitraa, D. Aurbach “Challenges in the development of advanced Li-ion batteries: a review” Energy Environ. Sci., 2011, 4, 3243-3262.
21. L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, “Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries” Energy Environ. Sci., 2011, 4, 2682-2699.
22. X. Li, C. Wang, “Engineering nanostructured anodes via electrostatic spray deposition for high performance lithium ion battery application” J. Mater. Chem. A 2013, 1, 165-182.
23. P. Poizot, S. Laruelle, S. Grugeon, J.-M. Tarasconz, “Rationalization of the Low-Potential Reactivity of 3d-Metal-Based Inorganic Compounds toward Li” J. Electrochem. Soc., 2002, 149, A1212- A1217.
24. T. Zhou, W. K. Pang, C. Zhang, J. Yang, Z. Chen, H. K. Liu, Z. Guo, “Enhanced Sodium-Ion Battery Performance by Structural Phase Transition from Two-Dimensional Hexagonal-SnS2 to Orthorhombic-SnS” ACS Nano 2014, 8, 8323–8333.
25. L. Luo, B. Zhao, B. Xiang, C.-M. Wang, “Size-Controlled Intercalation-to-Conversion Transition in Lithiation of Transition-Metal Chalcogenides-NbSe3” ACS Nano 2016, 10, 1249-1255.
26. M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets” Nat. Chem., 2013, 5, 263-275.
27. T. Stephenson, Z. Li, B. Olsen, D. Mitlin, “Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites” Energy Environ. Sci., 2014, 7, 209-231.
28. X. Xu , W. Liu , Y. Kim , J. Cho, “Nanostructured transition metal sulfides for lithium ion batteries: Progress and challenges” Nano Today 2014, 9, 604-630.
29. Jacob A. Andrade-Arvizu, Maykel Courel-Piedrahita, Osvaldo Vigil-Gala´n “SnS-based thin film solar cells: perspectives over the last 25 years” J Mater Sci: Mater Electron 2015, 26, 4541-4556.
30. W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y.Hao, T. F. Heinz, J. Hone, Z. L. Wang “Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics” Nature 2014, 514, 470-474.
31. M.-R. Gao, J.-X. Liang, Y.-R. Zheng, Y.-F. Xu, J. Jiang, Q. Gao, J. Li , S.-H. Yu “An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation” Nat. Commun., 2015, 6, 5982.
32. U.K Sen, P. Johari, S. Basu, C. Nayak, S. Mitra, “An experimental and computational study to understand the lithium storage mechanism in molybdenum disulfide” Nanoscale, 2014, 6, 10243-10254.
33. Y. Zhang, H. Zhang, J. Zhang, J. Wang, Z. Li, “Carbon-coated SnO2 thin films developed by magnetron sputtering as anode material for lithium-ion batteries” RSC Adv., 2015, 5, 106258.
34. B. Qu, G. Ji, B. Ding, M. Lu, W. Chen,J. Y. Lee “Origin of the Increased Li+-Storage Capacity of Stacked SnS2/Graphene Nanocomposite” ChemElectroChem., 2015, 2, 1138-1143.
35. S. Bourdeau, T. Brousse, D.M. Schleich, “Amorphous silicon as a possible anode material for Li-ion batteries” J. Power Sources., 1999, 81-82, 233-236.
36. D. Aurbacha, Y. Talyosefa, B. Markovskya, E. Markevicha,E. Zinigrada, L. Asrafa, J. S. Gnanaraja, H.-J. Kimb “Design of electrolyte solutions for Li and Li-ion batteries: a review” Electrochim. Acta., 2004, 50, 247-254.
37. G. Magali, J. C. Thomas, G. Alexis, G. Livia, P. Nir, H.-H. Chang, P. F. David, F. L. Simon, P. Odysseas, B. Christoph, M. Filippo, L. Saskia, L. Peter, S.-H. Yang, “Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights” J. Phys. Chem. Lett., 2015, 6, 4653-4672.
38. B. Qu, H. Li, M. Zhang, L. Mei, L. Chen, Y. Wang, Q. Li, T. Wang, “Ternary Cu2SnS3 cabbage-like nanostructures: large-scale synthesis and their application in Li-ion batteries with superior reversible capacity” Nanoscale., 2011, 3, 4389.
39. X. Yin, C. Tang, M. Chen, S. Adams, H. Wang, H. Gong, “Hierarchical porous Cu2ZnSnS4 films for high-capacity reversible lithium storage applications” J. Mater. Chem. A 2013, 1, 7927.
40. M.-S. Fan, J.-H. Chen, C.-T. Li, K.-W. Cheng, K.-C. Ho, “Copper zinc tin sulfide as a catalytic material for counter electrodes in dye-sensitized solar cells” J. Mater. Chem. A 2015, 3, 562-569.
41. X. Lu, Z. Zhuang, Q. Peng, Y. Li, “Wurtzite Cu2ZnSnS4 nanocrystals: a novel quaternary semiconductor.” Chem Commun (Camb) 2011, 47, 3141.
42. S. Chen, X. G. Gong, A. Walsh, S.-H. Wei, “Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights” Appl Phys Lett 2009, 94, 041903.
Chapter 2
1. J. G. Gabano, V. Dechenaux, G. Gerbier, “D-Size Lithium Cupric Sulfide Cells” J. Electrochem. Soc., 1972, 119, 459.
2. H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, and T. Yokota, “Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of e-b evaporated precursors,” Sol Energ Mat Sol C 1997, 49, 407.
3. J. Jeon, S. K. Jang, S. M. Jeon, G. Yoo, Y. H. Jang, J.-H. Park, S. Lee “Layer-controlled CVD growth of large-area two-dimensional MoS2 films” Nanoscale, 2015, 7, 1688-1695.
4. T.-J. Kim, C. Kim, D. Son, M. Choi, B. Park, “Novel SnS2-nanosheet anodes for lithium-ion batteries” J. Power Sources, 2007,167, 529-535.
5. C. Zhai, N. Du, H.Z.D. Yang, “Large-scale synthesis of ultrathin hexagonal tin disulfide nanosheets with highly reversible lithium storage” Chem. Commun., 2011,47, 1270-1272.
6. S. Liu, X. Yin, Q. Hao, M. Zhang, L. Li, L. Chen, Q. Li, Y. Wang, T. Wang, “Chemical bath deposition of SnS2 nanowall arrays with improved electrochemical performance for lithium ion battery” Mater. Lett., 2010,64, 2350-2353.
7. X. Zhou, L.-J. Wan, Y.-G. Guo, “Facile synthesis of MoS2@CMK-3 nanocomposite as an improved anode material for lithium-ion batteries” Nanoscale, 2012,4, 5868-5871.
8. H. Liu, D. Su, G. Wang, S.Z. Qiao, “An ordered mesoporous WS2 anode material with superior electrochemical performance for lithium ion batteries” J. Mater. Chem., Nanoscale, 2012,22, 17437-17440.
9. R. I. Walton, “Subcritical solvothermal synthesis of condensed inorganic materials” Chem. Soc. Rev., 2002, 31, 230-238.
10. M. He, L.-X. Yuan, Y.-H. Huang, “Acetylene black incorporated three-dimensional porous SnS2 nanoflowers with high performance for lithium storage” RSC Adv., 2013, 3, 3374-3383.
11. H. Li, W. Li, L. Ma, W. Chen, J. Wang, “Electrochemical lithiation/delithiation performances of 3D flowerlike MoS2 powders prepared by ionic liquid assisted hydrothermal route” J. Alloys Compd., 2009, 471, 442-447.
12. Y.-L. Zhou, W.-H. Zhou, M. Li, Y.-F. Du, S.-X. Wu “Hierarchical Cu2ZnSnS4 Particles for a Low-Cost Solar Cell: Morphology Control and Growth Mechanism” J. Phys. Chem. C, 2011, 115, 19632-19639.
13. B. Li, Y. Xie, J.X. Huang, H.L. Su, Y.T. Qian, “A Solvothermal Route to Nanocrystalline Cu7Te4 at Low Temperature” J. Solid State Chemistry, 1999, 146, 47-50.
14. U. K. Sen, P. Johari, S. Basu, C. Nayakc, S. Mitra, “An experimental and computational study to understand the lithium storage mechanism in molybdenum disulfide” Nanoscale, 2014, 6, 10243.
15. C.-H. Lai, M.-Y. Lu, L.-J. Chen, “Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage” J. Mater. Chem., 2012, 22, 19-30.
16. X. Li, J. Zai, S. Xiang, Y. Liu, X. He, Z. Xu,K. Wang, Z. Ma, X. Qian “Regeneration of Metal Sulfdes in the Delithiation Process: The Key to Cyclic Stability” Adv. Energy Mater. 2016, 1601056.
17. F. H., W.-C. Li, D. Li, A.-H. Lu “In Situ Electrochemical Generation of Mesostructured Cu2S/C Composite for Enhanced Lithium Storage: Mechanism and Material Properties” ChemElectroChem 2014, 1, 733-740.
18. K. Chang, D.S. Geng, X.F. Li, J.L. Yang, Y.J. Tang, M. Cai, R.Y. Li, X.L. Sun, “Ultrathin MoS2/Nitrogen-Doped Graphene Nanosheets with Highly Reversible Lithium Storage” Adv. Energy Mater. 2013, 3, 839-844.
19. Z. Jiang, C. Wang, G. Du, Y.J. Zhong, J.Z. Jiang, “In situ synthesis of SnS2@graphene nanocomposites for rechargeable lithium batteries” J. Mater.Chem. 2012, 22, 9494-9496.
20. H. S. Kim, Y. H. Chung, S. H. Kang, Y.-E. Sung “Electrochemical behavior of carbon-coated SnS2 for use as the anode in lithium-ion batteries” Electrochim. Acta., 2009, 54, 3606-3610.
21. J. Lin, J. Guo, C. Liu, H. Guo “Three-Dimensional Cu2ZnSnS4 Films with Modified Surface for Thin Film Lithium-Ion Batteries” ACS Appl. Mater. Interfaces 2015, 7, 17311-17317.
22. B. Qu, G. Ji, B. Ding, M. Lu, W. Chen, J.Y. Lee “Origin of the Increased Li+-Storage Capacity of Stacked SnS2/Graphene Nanocomposite” ChemElectroChem 2015, 2, 1138-1143.
23. J. Cabana , L. Monconduit , D. Larcher , M. R. Palacín “Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions” Adv. Energy Mater. 2014, 1400611.
24. P. Balaya, H. Li, L. Kienle, J. Maier, “Fully Reversible Homogeneous and Heterogeneous Li Storage in RuO2 with High Capacity” Adv. Funct. Mater., 2003, 13, 621-625.
25. Y.-Y. Hu, Z. Liu, K.-W. Nam, O. J. Borkiewicz, J. Cheng, X. Hua,M. T. Dunstan, X. Yu, K. M. Wiaderek, L.-S. Du, K. W. Chapman, P. J. Chupas, X.-Q. Yang, C. P. Grey “Origin of additional capacities in metal oxide lithium-ion battery electrodes” Nat. Mater., 2003, 12, 1130-1136.
26. D.-W. Wang, Q. Zeng, G. Zhou, L. Yin, F. Li, H.-M. Cheng, I.R. Gentle, G.Q.M. Lu, “Carbon–sulfur composites for Li–S batteries: status and prospects” J. Mater. Chem. A, 2013, 1, 9382-9394.
27. X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, J. Y. Huang “Size-Dependent Fracture of Silicon Nanoparticles During Lithiation” ACS Nano, 2012, 6, 1522-1531.
28. X. Rui, H. Tan, Q. Yan “Nanostructured metal sulfides for energy storage” Nanoscale, 2014, 6, 9889.
29. X. Yin, C. Tang, M. Chen, S. Adams, H. Wang, H. Gong, “Hierarchical porous Cu2ZnSnS4 films for high-capacity reversible lithium storage applications” J. Mater. Chem. A 2013, 1, 7927.
30. S. L. Candelaria, Y. Shao, W. Zhou, X. Li, J. Xiao, J.-G. Zhang, Y. Wang, J. Liu, J. Li, G. Cao, “Nanostructured carbon for energy storage and conversion” Nano Energy 2012, 1, 195-220.
31. C. Shen, L. Ma, M. Zheng, B. Zhao, D. Qiu, L. Pan, J. Cao, Y. Shi, “Synthesis and electrochemical properties of graphene-SnS2 nanocomposites for lithium-ion batteries” J. Solid State Electrochem., 2012, 16, 1999-2004.
32. J.-G. Kang, G.-H. Lee, K.-S. Park, S.-O. Kim, S. Lee, D.-W. Kim, J.-G. Park, “Three-dimensional hierarchical self-supported multi-walled carbon nanotubes/tin(IV) disulfide nanosheets heterostructure electrodes for high power Li ion batteries” J. Mater. Chem., 2012, 22, 9330-9337.
33. J. Li, P. Wu, F. Lou, P. Zhang, Y. Tang, Y. Zhou, T. Lu, “Mesoporous carbon anchored with SnS2 nanosheets as an advanced anode for lithium-ion batteries” Electrochim. Acta., 2013, 111, 862-868.
34. M. Sevilla, R. Mokaya, “Energy storage applications of activated carbons: supercapacitors and hydrogen storage” Energy Environ. Sci., 2014, 7, 1250.
35. J. L. Xie, C. X. Guo, C. M. Li, “Construction of one-dimensional nanostructures on graphene for efficient energy conversion and storage” Energy Environ. Sci., 2014, 7, 2559-2579.
36. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang,A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x” J. Chem. Soc., Chem. Commun. 1977, 578-580.
37. J.-M. Jeong, B. G. Choi,S. C. Lee, K. G. Lee, S.-J. Chang, Y.-K. Han, Y. B. Lee, H. U. Lee,S. Kwon, G. Lee, C.-S. Lee, Y. S. Huh, “Hierarchical Hollow Spheres of Fe2O3@Polyaniline for Lithium Ion Battery Anodes” Adv. Mater. 2013, 25, 6250.
38. Y. Yang, G. Yu, J. J. Cha, H. Wu,M. Vosgueritchian, Y. Yao, Z. Bao, Y. Cui, “Improving the Performance of Lithium-Sulfur Batteries by Conductive Polymer Coating” ACS Nano 2011, 5,9187.
39. W. Y. Li, Q. F. Zhang, G. Y. Zheng,Z. W. Seh, H. B. Yao, Y. Cui, “Understanding the Role of Different Conductive Polymers in Improving the Nanostructured Sulfur Cathode Performance” Nano Lett. 2013, 13, 5534.
40. C. Wang, H. Wu, Z. Chen, M. T. McDowell, Y. Cui, Z. Bao, “Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries” Nat. Chem. 2013, 5, 1042.
41. H. Liu, F. Zhang, W. Li, X. Zhang, C.-S. Lee, W. Wang, Y. Tang, “Porous tremella-like MoS2/polyaniline hybrid composite with enhanced performance for lithium-ion battery anodes” Electrochim. Acta 2015, 167, 132.
42. Z. P. Sun, W. Ai, J. L. Liu, X. Y. Qi, Y. L. Wang, J. H. Zhu, H. Zhang,T. Yu, “Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries” Nanoscale 2014, 6, 6563.
43. J.-S. Chou, K.-H. Yang, J.-Y. Lin, “Peak Shear Strength of Discrete Fiber-Reinforced Soils Computed by Machine Learning and Metaensemble Methods” J.Comp.Civil Eng. 2016, 30, 04016036.
44. C.-N. Liu, K.-H. Yang, Y.-H. Ho, C.-M. Chang, “Lessons learned from three failures on a high steep geogrid-reinforced slope” Geotext Geomembranes. 2012, 34, 131.
45. J.-S. Chou, K.-H. Yang, J. P.Pampang, A.-D. Pham, “Evolutionary metaheuristic intelligence to simulate tensile loads in reinforcement for geosynthetic-reinforced soil structures” Comput. Geotech. 2015, 66, 1.
46. C.-N. Liu, K.-H. Yang and M. D. Nguyen, “Behavior of geogrid–reinforced sand and effect of reinforcement anchorage in large-scale plane strain compression” Geotext Geomembranes. 2014, 42, 479.
47. H. Zhou, W.-C. Hsu, H.-S. Duan, B. Bob, W. Yang, T.-B. Song, C.-J. Hsu, Y. Yang, “CZTS nanocrystals: a promising approach for next generation thin film photovoltaics” Energy Environ. Sci. 2013, 6, 2822.
48. Y.-L. Zhou, W.-H. Zhou, M. Li, Y.-F. Du, S.-X. Wu, “Hierarchical Cu2ZnSnS4 Particles for a Low-Cost Solar Cell: Morphology Control and Growth Mechanism” J. Phys. Chem. C 2011, 115, 19632.
49. H. Zhou, H.-S. Duan, W. Yang, Q. Chen, C.-J. Hsu, W.-C. Hsu, C.-C. Chen, Y. Yang, “Facile single-component precursor for Cu2ZnSnS4 with enhanced phase and composition controllability” Energy Environ. Sci. 2014, 7, 998.
50. M.-S. Fan, J.-H. Chen, C.-T. Li, K.-W. Cheng, K.-C. Ho, “Copper zinc tin sulfide as a catalytic material for counter electrodes in dye-sensitized solar cells” J. Mater. Chem. A 2015, 3, 562.
51. E. Ha, L. Y. S. Lee, J. Wang, F. Li, K.-Y. Wong, S. C. E. Tsang, “Significant Enhancement in Photocatalytic Reduction of Water to Hydrogen by Au/Cu2ZnSnS4 Nanostructure” Adv. Mater. 2014, 26, 3496.
Chapter 4
1. P. A. Fernandes, P. M. P. Salomé, A. F. da Cunha, J. Alloys Compd. 2011, 509, 7600.
2. X. Zhai, H. Jia, Y. Zhang, Y. Lei, J. Wei, Y. Gao, J. Chu, W. He, J.-J. Yin, Z. Zheng, CrystEngComm 2014, 16, 6244.
3. W. Xin, L. Wenjun, G. Zhongjie, S. Hansen, F. Gao, Z. Yong and Z. Zhigang, J Phys D Appl Phys, 2016, 49, 105102.
4. M. C. Johnson, C. Wrasman, X. Zhang, M. Manno, C. Leighton, E. S. Aydil, Chem. Mater., 2015, 27, 2507–2514.
5. Y. Q. Chen, X. J. Zheng, S. X. Mao, W. Li, J. Appl. Phys. 2010, 107, 094302.
6. S. G. Hashmi, M. Ozkan, J. Halme, J. Paltakari, P. D. Lund, Nano Energy 2014, 9, 212.
7. M. Huang, X. Hou, H. Ma, J. Zhao, Y. Yang, Electronic Packaging Technology (ICEPT) 2013 14th International Conference on, pp. 879-882, 2013.
8. E. M. Mkawi, K. Ibrahim, M. K. M. Ali, M. A. Farrukh, A. S. Mohamed, J. Mater. Sci: Mater. Electron. 2014, 25, 857.
9. A. R. Zeradjanin, A. A. Topalov, Q. Van Overmeere, S. Cherevko, X. Chen, E. Ventosa, W. Schuhmann, K. J. J. Mayrhofer, RSC Adv. 2014, 4, 9579.
10. F. Yang, L. Zhang, A. Zuzuarregui, K. Gregorczyk, L. Li, M. Beltrán, C. Tollan, J. Brede, C. Rogero, A. Chuvilin, M. Knez, ACS Appl. Mater. Interfaces. 2013, 7, 20513.
11. T. Zhou, W. K. Pang, C. Zhang, J. Yang, Z. Chen, H. K. Liu, Z. Guo, ACS Nano 2014, 8, 8323–8333.
12. L. Luo, B. Zhao, B. Xiang, C.-M. Wang, ACS Nano 2016, 10, 1249-1255.
13. Jacob A. Andrade-Arvizu, Maykel Courel-Piedrahita, Osvaldo Vigil-Gala´n J Mater Sci: Mater Electron 2015, 26, 4541-4556.
14. W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y.Hao, T. F. Heinz, J. Hone, Z. L. Wang, Nature 2014, 514, 470-474.
15. M.-R. Gao, J.-X. Liang, Y.-R. Zheng, Y.-F. Xu, J. Jiang, Q. Gao, J. Li , S.-H. Yu , Nat. Commun., 2015, 6, 5982.
16. U.K Sen, P. Johari, S. Basu, C. Nayak, S. Mitra, Nanoscale, 2014, 6, 10243-10254.
17. X. Xu , W. Liu , Y. Kim , J. Cho, Nano Today 2014, 9, 604-630.
18. T. Stephenson, Z. Li, B. Olsenab, D. Mitlin Energy Environ. Sci., 2014, 7, 209-231.
19. B. Qu, G. Ji,B. Ding, M. Lu,W. Chen,J. Y. Lee, ChemElectroChem 2015, 2, 1138 -1143.
20. C. Ma, J. Xu, J. Alvarado, B. Qu, J. Somerville, J. Y. Lee,Y. S. Meng, Chem. Mater. 2015, 27, 5633-5640
21. Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa and T. Miyasaka, Science, 1997, 276, 1395–1397
22. L. Nie, Y. Zhang, K. Ye, J. Han, Y. Wang,G. Rakesh,Y. Li, R. Xu, Q. Yan,Q. Zhang, J. Mater. Chem. A, 2015, 3,19410
23. X. Yin, C. Tang, M. Chen, S. Adams, H. Wang, H. Gong, J. Mater. Chem. A 2013, 1, 7927.
24. J. R. Dahn, W. R. McKinnon, Solid State Ionics, 1987, 23, 1
25. J. J. Aubom, Y. L. Barberio, J. Electrochem. Soc., 1987, 134, 638
26. W.-J. Yu , L. Zhang , P.-X. Hou , F. Li , C. Liu ,H.-M. Cheng, Adv. Energy Mater. 2016, 6, 1501755.
27. D. Aurbach , E. Pollak , R. Elazari , G. Salitra , C. S. Kelley , J. Affi nito , J. Electrochem. Soc. 2009, 156, A694
28. P. Limthongkul, Y.-I. Jang, N.J. Dudney, Y.-M. Chiang, J. Power Sources 2003, 119, 604-609.
29. M.T. McDowell, S.W. Lee, C. Wang, W.D. Nix, Y. Cui, Adv. Mater. 2014, 24, 6034-6041.
30. C. Feng, L. Zhang, M. Yang, X. Song, H. Zhao, Z. Jia, K. Sun, G. Liu, ACS Appl. Mater. Interfaces 2015, 7, 15726-1573.
31. B. Qu, G. Ji, B. Ding,M. Lu, W. Chen,J. Y. Lee, ChemElectroChem 2015, 2, 1138-1143.
32. M. Mao, L. Jiang, L. Wu, M. Zhang, T. Wang, J. Mater. Chem. A, 2015, 3,13384.
33. F. Wang, S.-W. Kim, D.-H. Seo, K. Kang, L. Wang, D. Su, J. J. Vajo,J. Wang, J, Graetz1, Nat. Commun., 2015, 6, 6668.
34. J. Mao, X. Fan, C. Luo, C. Wang, ACS Appl. Mater. Interface., 2016, 8, 7147−7155.
Chapter 5
1. M. Berginc, M. Topic, U. Opara Krasovec, Phys. Chem. Chem. Phys. 2014, 16, 12940.
2. B. Sheng , J. Liu , Z. Li , M. Wang , K. Zhu , J. Qiu, J. Wang, Mater. Lett. 2015, 144, 153-156.
3. X. Yuan, M. Li, H. Ruan, Y. Yang, Y. Liu, L. Zhang, J. Mater. Sci: Mater. Electron. 2016, 27, 6030-6034.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top