|
Chapter 1 1. U.S.E.I. Administration, Annual Energy Outlook (U.S. Department of Energy, Washington, DC, 2013). 2. Plug-in Car Grid Load. (2009, June 6). Retrieved from http://celticsolar.blogspot.tw/2009/06/plug-in-transportation-can-grid-take-it.html 3. Neural Energy consulting (2015, July). Retrieved from http://www.neuralenergy.info/2014/07/energy-storage.html 4. STATE OF THE ART OF LITHIUM BATTERY RESEARCH: MARKET OUTLOOK AND RESEARCH REVIEWS (2015, Oct 13). Retrieved from http://www.msesupplies.com/blogs/news/53646980-state-of-the-art-of-lithium-battery-research-market-outlook-and-research-reviews. 5. Lithium-Ion Batteries for Hybrid Electric Vehicles (2016). Retrieved from http://www.hitachi.com/environment/showcase/solution/mobility/lithiumion.html 6. Wong, D.P. (2013). Synthesis of Silicon-based Nanomaterials using Magnesiothermic Reduction Process for Energy-related Applications (Doctoral dissertation). 7. THE COST COMPONENTS OF A LITHIUM ION BATTERY (2016, Jan 11). Retrieved from http://qnovo.com/82-the-cost-components-of-a-battery/ 8. Marom, R., Amalraj, S. F., Leifer, N., Jacoba D. Aurbacha, D. “A review of advanced and practical lithium battery materials” J. Mater. Chem., 2011,21, 9938-9954. 9. Whittingham, M.S. “Lithium batteries and cathode materials” Chem Rev 2004,104, 4271–4301 10. Mizushima, K., Jones, P.C., Wiseman, P.J., Goodenough, J.B. “LixCoO2 (011. Julien, C. M., Mauger, A., Zaghib, K., Groult, H. “Comparative Issues of Cathode Materials for Li-Ion Batteries” Inorganics., 2014, 2, 132-154. 12. Xu, B., Qian, D., Wang, Z., Meng, Y. S. “Recent progress in cathode materials research for advanced lithium ion batteries” Mater. Sci. Eng., R., 2012, 73, 51-65. 13. Goriparti, S., Mielea, E., Angelis, F. D., Fabrizio, E. D., Zaccaria, R. P. Capiglia, C. “Review on recent progress of nanostructured anode materials for Li-ion batteries” J. Power Sources, 2014,257, 421-443. 14. K. Persson, V.A. Sethuraman, L.J. Hardwick, Y. Hinuma, Y.S. Meng, A. van der Ven, V. Srinivasan, R. Kostecki, G. Ceder, “Lithium Diffusion in Graphitic Carbon” J. Phys. Chem. Lett., 2010, 1, 1176-1180. 15. H. Fujimoto, K. Tokumitsu, A. Mabuchi, N. Chinnasamy, T. Kasuh, “The anode performance of the hard carbon for the lithium ion battery derived from the oxygen-containing aromatic precursors” J. Power Sources, 2010,195, 7452-7456. 16. C.M. Schauerman, M.J. Ganter, G. Gaustad, C.W. Babbitt, R.P. Raffaelle,B.J. Landi, “Recycling single-wall carbon nanotube anodes from lithium ion batteries” J. Mater. Chem., 2012, 22, 12008-12015. 17. J. Hou, Y. Shao, M.W. Ellis, R.B. Moore, B. Yi, “Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries” Phys. Chem. Chem. Phys, 2011, 13, 15384-15402. 18. A.L.M. Reddy, S.R. Gowda, M.M. Shaijumon, P.M. Ajayan, “Hybrid Nanostructures for Energy Storage Applications” Adv. Mater., 2012, 24, 5045-5064. 19. M.T. McDowell, S.W. Lee, J.T. Harris, B.A. Korgel, C. Wang, W.D. Nix, Y. Cui, “In Situ TEM of Two-Phase Lithiation of Amorphous Silicon Nanospheres” Nano Lett., 2013, 13, 758-764. 20. V. Etacheri, R. Marom, R. Elazari, G. Salitraa, D. Aurbach “Challenges in the development of advanced Li-ion batteries: a review” Energy Environ. Sci., 2011, 4, 3243-3262. 21. L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, “Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries” Energy Environ. Sci., 2011, 4, 2682-2699. 22. X. Li, C. Wang, “Engineering nanostructured anodes via electrostatic spray deposition for high performance lithium ion battery application” J. Mater. Chem. A 2013, 1, 165-182. 23. P. Poizot, S. Laruelle, S. Grugeon, J.-M. Tarasconz, “Rationalization of the Low-Potential Reactivity of 3d-Metal-Based Inorganic Compounds toward Li” J. Electrochem. Soc., 2002, 149, A1212- A1217. 24. T. Zhou, W. K. Pang, C. Zhang, J. Yang, Z. Chen, H. K. Liu, Z. Guo, “Enhanced Sodium-Ion Battery Performance by Structural Phase Transition from Two-Dimensional Hexagonal-SnS2 to Orthorhombic-SnS” ACS Nano 2014, 8, 8323–8333. 25. L. Luo, B. Zhao, B. Xiang, C.-M. Wang, “Size-Controlled Intercalation-to-Conversion Transition in Lithiation of Transition-Metal Chalcogenides-NbSe3” ACS Nano 2016, 10, 1249-1255. 26. M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets” Nat. Chem., 2013, 5, 263-275. 27. T. Stephenson, Z. Li, B. Olsen, D. Mitlin, “Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites” Energy Environ. Sci., 2014, 7, 209-231. 28. X. Xu , W. Liu , Y. Kim , J. Cho, “Nanostructured transition metal sulfides for lithium ion batteries: Progress and challenges” Nano Today 2014, 9, 604-630. 29. Jacob A. Andrade-Arvizu, Maykel Courel-Piedrahita, Osvaldo Vigil-Gala´n “SnS-based thin film solar cells: perspectives over the last 25 years” J Mater Sci: Mater Electron 2015, 26, 4541-4556. 30. W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y.Hao, T. F. Heinz, J. Hone, Z. L. Wang “Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics” Nature 2014, 514, 470-474. 31. M.-R. Gao, J.-X. Liang, Y.-R. Zheng, Y.-F. Xu, J. Jiang, Q. Gao, J. Li , S.-H. Yu “An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation” Nat. Commun., 2015, 6, 5982. 32. U.K Sen, P. Johari, S. Basu, C. Nayak, S. Mitra, “An experimental and computational study to understand the lithium storage mechanism in molybdenum disulfide” Nanoscale, 2014, 6, 10243-10254. 33. Y. Zhang, H. Zhang, J. Zhang, J. Wang, Z. Li, “Carbon-coated SnO2 thin films developed by magnetron sputtering as anode material for lithium-ion batteries” RSC Adv., 2015, 5, 106258. 34. B. Qu, G. Ji, B. Ding, M. Lu, W. Chen,J. Y. Lee “Origin of the Increased Li+-Storage Capacity of Stacked SnS2/Graphene Nanocomposite” ChemElectroChem., 2015, 2, 1138-1143. 35. S. Bourdeau, T. Brousse, D.M. Schleich, “Amorphous silicon as a possible anode material for Li-ion batteries” J. Power Sources., 1999, 81-82, 233-236. 36. D. Aurbacha, Y. Talyosefa, B. Markovskya, E. Markevicha,E. Zinigrada, L. Asrafa, J. S. Gnanaraja, H.-J. Kimb “Design of electrolyte solutions for Li and Li-ion batteries: a review” Electrochim. Acta., 2004, 50, 247-254. 37. G. Magali, J. C. Thomas, G. Alexis, G. Livia, P. Nir, H.-H. Chang, P. F. David, F. L. Simon, P. Odysseas, B. Christoph, M. Filippo, L. Saskia, L. Peter, S.-H. Yang, “Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights” J. Phys. Chem. Lett., 2015, 6, 4653-4672. 38. B. Qu, H. Li, M. Zhang, L. Mei, L. Chen, Y. Wang, Q. Li, T. Wang, “Ternary Cu2SnS3 cabbage-like nanostructures: large-scale synthesis and their application in Li-ion batteries with superior reversible capacity” Nanoscale., 2011, 3, 4389. 39. X. Yin, C. Tang, M. Chen, S. Adams, H. Wang, H. Gong, “Hierarchical porous Cu2ZnSnS4 films for high-capacity reversible lithium storage applications” J. Mater. Chem. A 2013, 1, 7927. 40. M.-S. Fan, J.-H. Chen, C.-T. Li, K.-W. Cheng, K.-C. Ho, “Copper zinc tin sulfide as a catalytic material for counter electrodes in dye-sensitized solar cells” J. Mater. Chem. A 2015, 3, 562-569. 41. X. Lu, Z. Zhuang, Q. Peng, Y. Li, “Wurtzite Cu2ZnSnS4 nanocrystals: a novel quaternary semiconductor.” Chem Commun (Camb) 2011, 47, 3141. 42. S. Chen, X. G. Gong, A. Walsh, S.-H. Wei, “Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights” Appl Phys Lett 2009, 94, 041903. Chapter 2 1. J. G. Gabano, V. Dechenaux, G. Gerbier, “D-Size Lithium Cupric Sulfide Cells” J. Electrochem. Soc., 1972, 119, 459. 2. H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, and T. Yokota, “Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of e-b evaporated precursors,” Sol Energ Mat Sol C 1997, 49, 407. 3. J. Jeon, S. K. Jang, S. M. Jeon, G. Yoo, Y. H. Jang, J.-H. Park, S. Lee “Layer-controlled CVD growth of large-area two-dimensional MoS2 films” Nanoscale, 2015, 7, 1688-1695. 4. T.-J. Kim, C. Kim, D. Son, M. Choi, B. Park, “Novel SnS2-nanosheet anodes for lithium-ion batteries” J. Power Sources, 2007,167, 529-535. 5. C. Zhai, N. Du, H.Z.D. Yang, “Large-scale synthesis of ultrathin hexagonal tin disulfide nanosheets with highly reversible lithium storage” Chem. Commun., 2011,47, 1270-1272. 6. S. Liu, X. Yin, Q. Hao, M. Zhang, L. Li, L. Chen, Q. Li, Y. Wang, T. Wang, “Chemical bath deposition of SnS2 nanowall arrays with improved electrochemical performance for lithium ion battery” Mater. Lett., 2010,64, 2350-2353. 7. X. Zhou, L.-J. Wan, Y.-G. Guo, “Facile synthesis of MoS2@CMK-3 nanocomposite as an improved anode material for lithium-ion batteries” Nanoscale, 2012,4, 5868-5871. 8. H. Liu, D. Su, G. Wang, S.Z. Qiao, “An ordered mesoporous WS2 anode material with superior electrochemical performance for lithium ion batteries” J. Mater. Chem., Nanoscale, 2012,22, 17437-17440. 9. R. I. Walton, “Subcritical solvothermal synthesis of condensed inorganic materials” Chem. Soc. Rev., 2002, 31, 230-238. 10. M. He, L.-X. Yuan, Y.-H. Huang, “Acetylene black incorporated three-dimensional porous SnS2 nanoflowers with high performance for lithium storage” RSC Adv., 2013, 3, 3374-3383. 11. H. Li, W. Li, L. Ma, W. Chen, J. Wang, “Electrochemical lithiation/delithiation performances of 3D flowerlike MoS2 powders prepared by ionic liquid assisted hydrothermal route” J. Alloys Compd., 2009, 471, 442-447. 12. Y.-L. Zhou, W.-H. Zhou, M. Li, Y.-F. Du, S.-X. Wu “Hierarchical Cu2ZnSnS4 Particles for a Low-Cost Solar Cell: Morphology Control and Growth Mechanism” J. Phys. Chem. C, 2011, 115, 19632-19639. 13. B. Li, Y. Xie, J.X. Huang, H.L. Su, Y.T. Qian, “A Solvothermal Route to Nanocrystalline Cu7Te4 at Low Temperature” J. Solid State Chemistry, 1999, 146, 47-50. 14. U. K. Sen, P. Johari, S. Basu, C. Nayakc, S. Mitra, “An experimental and computational study to understand the lithium storage mechanism in molybdenum disulfide” Nanoscale, 2014, 6, 10243. 15. C.-H. Lai, M.-Y. Lu, L.-J. Chen, “Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage” J. Mater. Chem., 2012, 22, 19-30. 16. X. Li, J. Zai, S. Xiang, Y. Liu, X. He, Z. Xu,K. Wang, Z. Ma, X. Qian “Regeneration of Metal Sulfdes in the Delithiation Process: The Key to Cyclic Stability” Adv. Energy Mater. 2016, 1601056. 17. F. H., W.-C. Li, D. Li, A.-H. Lu “In Situ Electrochemical Generation of Mesostructured Cu2S/C Composite for Enhanced Lithium Storage: Mechanism and Material Properties” ChemElectroChem 2014, 1, 733-740. 18. K. Chang, D.S. Geng, X.F. Li, J.L. Yang, Y.J. Tang, M. Cai, R.Y. Li, X.L. Sun, “Ultrathin MoS2/Nitrogen-Doped Graphene Nanosheets with Highly Reversible Lithium Storage” Adv. Energy Mater. 2013, 3, 839-844. 19. Z. Jiang, C. Wang, G. Du, Y.J. Zhong, J.Z. Jiang, “In situ synthesis of SnS2@graphene nanocomposites for rechargeable lithium batteries” J. Mater.Chem. 2012, 22, 9494-9496. 20. H. S. Kim, Y. H. Chung, S. H. Kang, Y.-E. Sung “Electrochemical behavior of carbon-coated SnS2 for use as the anode in lithium-ion batteries” Electrochim. Acta., 2009, 54, 3606-3610. 21. J. Lin, J. Guo, C. Liu, H. Guo “Three-Dimensional Cu2ZnSnS4 Films with Modified Surface for Thin Film Lithium-Ion Batteries” ACS Appl. Mater. Interfaces 2015, 7, 17311-17317. 22. B. Qu, G. Ji, B. Ding, M. Lu, W. Chen, J.Y. Lee “Origin of the Increased Li+-Storage Capacity of Stacked SnS2/Graphene Nanocomposite” ChemElectroChem 2015, 2, 1138-1143. 23. J. Cabana , L. Monconduit , D. Larcher , M. R. Palacín “Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions” Adv. Energy Mater. 2014, 1400611. 24. P. Balaya, H. Li, L. Kienle, J. Maier, “Fully Reversible Homogeneous and Heterogeneous Li Storage in RuO2 with High Capacity” Adv. Funct. Mater., 2003, 13, 621-625. 25. Y.-Y. Hu, Z. Liu, K.-W. Nam, O. J. Borkiewicz, J. Cheng, X. Hua,M. T. Dunstan, X. Yu, K. M. Wiaderek, L.-S. Du, K. W. Chapman, P. J. Chupas, X.-Q. Yang, C. P. Grey “Origin of additional capacities in metal oxide lithium-ion battery electrodes” Nat. Mater., 2003, 12, 1130-1136. 26. D.-W. Wang, Q. Zeng, G. Zhou, L. Yin, F. Li, H.-M. Cheng, I.R. Gentle, G.Q.M. Lu, “Carbon–sulfur composites for Li–S batteries: status and prospects” J. Mater. Chem. A, 2013, 1, 9382-9394. 27. X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, J. Y. Huang “Size-Dependent Fracture of Silicon Nanoparticles During Lithiation” ACS Nano, 2012, 6, 1522-1531. 28. X. Rui, H. Tan, Q. Yan “Nanostructured metal sulfides for energy storage” Nanoscale, 2014, 6, 9889. 29. X. Yin, C. Tang, M. Chen, S. Adams, H. Wang, H. Gong, “Hierarchical porous Cu2ZnSnS4 films for high-capacity reversible lithium storage applications” J. Mater. Chem. A 2013, 1, 7927. 30. S. L. Candelaria, Y. Shao, W. Zhou, X. Li, J. Xiao, J.-G. Zhang, Y. Wang, J. Liu, J. Li, G. Cao, “Nanostructured carbon for energy storage and conversion” Nano Energy 2012, 1, 195-220. 31. C. Shen, L. Ma, M. Zheng, B. Zhao, D. Qiu, L. Pan, J. Cao, Y. Shi, “Synthesis and electrochemical properties of graphene-SnS2 nanocomposites for lithium-ion batteries” J. Solid State Electrochem., 2012, 16, 1999-2004. 32. J.-G. Kang, G.-H. Lee, K.-S. Park, S.-O. Kim, S. Lee, D.-W. Kim, J.-G. Park, “Three-dimensional hierarchical self-supported multi-walled carbon nanotubes/tin(IV) disulfide nanosheets heterostructure electrodes for high power Li ion batteries” J. Mater. Chem., 2012, 22, 9330-9337. 33. J. Li, P. Wu, F. Lou, P. Zhang, Y. Tang, Y. Zhou, T. Lu, “Mesoporous carbon anchored with SnS2 nanosheets as an advanced anode for lithium-ion batteries” Electrochim. Acta., 2013, 111, 862-868. 34. M. Sevilla, R. Mokaya, “Energy storage applications of activated carbons: supercapacitors and hydrogen storage” Energy Environ. Sci., 2014, 7, 1250. 35. J. L. Xie, C. X. Guo, C. M. Li, “Construction of one-dimensional nanostructures on graphene for efficient energy conversion and storage” Energy Environ. Sci., 2014, 7, 2559-2579. 36. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang,A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x” J. Chem. Soc., Chem. Commun. 1977, 578-580. 37. J.-M. Jeong, B. G. Choi,S. C. Lee, K. G. Lee, S.-J. Chang, Y.-K. Han, Y. B. Lee, H. U. Lee,S. Kwon, G. Lee, C.-S. Lee, Y. S. Huh, “Hierarchical Hollow Spheres of Fe2O3@Polyaniline for Lithium Ion Battery Anodes” Adv. Mater. 2013, 25, 6250. 38. Y. Yang, G. Yu, J. J. Cha, H. Wu,M. Vosgueritchian, Y. Yao, Z. Bao, Y. Cui, “Improving the Performance of Lithium-Sulfur Batteries by Conductive Polymer Coating” ACS Nano 2011, 5,9187. 39. W. Y. Li, Q. F. Zhang, G. Y. Zheng,Z. W. Seh, H. B. Yao, Y. Cui, “Understanding the Role of Different Conductive Polymers in Improving the Nanostructured Sulfur Cathode Performance” Nano Lett. 2013, 13, 5534. 40. C. Wang, H. Wu, Z. Chen, M. T. McDowell, Y. Cui, Z. Bao, “Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries” Nat. Chem. 2013, 5, 1042. 41. H. Liu, F. Zhang, W. Li, X. Zhang, C.-S. Lee, W. Wang, Y. Tang, “Porous tremella-like MoS2/polyaniline hybrid composite with enhanced performance for lithium-ion battery anodes” Electrochim. Acta 2015, 167, 132. 42. Z. P. Sun, W. Ai, J. L. Liu, X. Y. Qi, Y. L. Wang, J. H. Zhu, H. Zhang,T. Yu, “Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries” Nanoscale 2014, 6, 6563. 43. J.-S. Chou, K.-H. Yang, J.-Y. Lin, “Peak Shear Strength of Discrete Fiber-Reinforced Soils Computed by Machine Learning and Metaensemble Methods” J.Comp.Civil Eng. 2016, 30, 04016036. 44. C.-N. Liu, K.-H. Yang, Y.-H. Ho, C.-M. Chang, “Lessons learned from three failures on a high steep geogrid-reinforced slope” Geotext Geomembranes. 2012, 34, 131. 45. J.-S. Chou, K.-H. Yang, J. P.Pampang, A.-D. Pham, “Evolutionary metaheuristic intelligence to simulate tensile loads in reinforcement for geosynthetic-reinforced soil structures” Comput. Geotech. 2015, 66, 1. 46. C.-N. Liu, K.-H. Yang and M. D. Nguyen, “Behavior of geogrid–reinforced sand and effect of reinforcement anchorage in large-scale plane strain compression” Geotext Geomembranes. 2014, 42, 479. 47. H. Zhou, W.-C. Hsu, H.-S. Duan, B. Bob, W. Yang, T.-B. Song, C.-J. Hsu, Y. Yang, “CZTS nanocrystals: a promising approach for next generation thin film photovoltaics” Energy Environ. Sci. 2013, 6, 2822. 48. Y.-L. Zhou, W.-H. Zhou, M. Li, Y.-F. Du, S.-X. Wu, “Hierarchical Cu2ZnSnS4 Particles for a Low-Cost Solar Cell: Morphology Control and Growth Mechanism” J. Phys. Chem. C 2011, 115, 19632. 49. H. Zhou, H.-S. Duan, W. Yang, Q. Chen, C.-J. Hsu, W.-C. Hsu, C.-C. Chen, Y. Yang, “Facile single-component precursor for Cu2ZnSnS4 with enhanced phase and composition controllability” Energy Environ. Sci. 2014, 7, 998. 50. M.-S. Fan, J.-H. Chen, C.-T. Li, K.-W. Cheng, K.-C. Ho, “Copper zinc tin sulfide as a catalytic material for counter electrodes in dye-sensitized solar cells” J. Mater. Chem. A 2015, 3, 562. 51. E. Ha, L. Y. S. Lee, J. Wang, F. Li, K.-Y. Wong, S. C. E. Tsang, “Significant Enhancement in Photocatalytic Reduction of Water to Hydrogen by Au/Cu2ZnSnS4 Nanostructure” Adv. Mater. 2014, 26, 3496. Chapter 4 1. P. A. Fernandes, P. M. P. Salomé, A. F. da Cunha, J. Alloys Compd. 2011, 509, 7600. 2. X. Zhai, H. Jia, Y. Zhang, Y. Lei, J. Wei, Y. Gao, J. Chu, W. He, J.-J. Yin, Z. Zheng, CrystEngComm 2014, 16, 6244. 3. W. Xin, L. Wenjun, G. Zhongjie, S. Hansen, F. Gao, Z. Yong and Z. Zhigang, J Phys D Appl Phys, 2016, 49, 105102. 4. M. C. Johnson, C. Wrasman, X. Zhang, M. Manno, C. Leighton, E. S. Aydil, Chem. Mater., 2015, 27, 2507–2514. 5. Y. Q. Chen, X. J. Zheng, S. X. Mao, W. Li, J. Appl. Phys. 2010, 107, 094302. 6. S. G. Hashmi, M. Ozkan, J. Halme, J. Paltakari, P. D. Lund, Nano Energy 2014, 9, 212. 7. M. Huang, X. Hou, H. Ma, J. Zhao, Y. Yang, Electronic Packaging Technology (ICEPT) 2013 14th International Conference on, pp. 879-882, 2013. 8. E. M. Mkawi, K. Ibrahim, M. K. M. Ali, M. A. Farrukh, A. S. Mohamed, J. Mater. Sci: Mater. Electron. 2014, 25, 857. 9. A. R. Zeradjanin, A. A. Topalov, Q. Van Overmeere, S. Cherevko, X. Chen, E. Ventosa, W. Schuhmann, K. J. J. Mayrhofer, RSC Adv. 2014, 4, 9579. 10. F. Yang, L. Zhang, A. Zuzuarregui, K. Gregorczyk, L. Li, M. Beltrán, C. Tollan, J. Brede, C. Rogero, A. Chuvilin, M. Knez, ACS Appl. Mater. Interfaces. 2013, 7, 20513. 11. T. Zhou, W. K. Pang, C. Zhang, J. Yang, Z. Chen, H. K. Liu, Z. Guo, ACS Nano 2014, 8, 8323–8333. 12. L. Luo, B. Zhao, B. Xiang, C.-M. Wang, ACS Nano 2016, 10, 1249-1255. 13. Jacob A. Andrade-Arvizu, Maykel Courel-Piedrahita, Osvaldo Vigil-Gala´n J Mater Sci: Mater Electron 2015, 26, 4541-4556. 14. W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y.Hao, T. F. Heinz, J. Hone, Z. L. Wang, Nature 2014, 514, 470-474. 15. M.-R. Gao, J.-X. Liang, Y.-R. Zheng, Y.-F. Xu, J. Jiang, Q. Gao, J. Li , S.-H. Yu , Nat. Commun., 2015, 6, 5982. 16. U.K Sen, P. Johari, S. Basu, C. Nayak, S. Mitra, Nanoscale, 2014, 6, 10243-10254. 17. X. Xu , W. Liu , Y. Kim , J. Cho, Nano Today 2014, 9, 604-630. 18. T. Stephenson, Z. Li, B. Olsenab, D. Mitlin Energy Environ. Sci., 2014, 7, 209-231. 19. B. Qu, G. Ji,B. Ding, M. Lu,W. Chen,J. Y. Lee, ChemElectroChem 2015, 2, 1138 -1143. 20. C. Ma, J. Xu, J. Alvarado, B. Qu, J. Somerville, J. Y. Lee,Y. S. Meng, Chem. Mater. 2015, 27, 5633-5640 21. Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa and T. Miyasaka, Science, 1997, 276, 1395–1397 22. L. Nie, Y. Zhang, K. Ye, J. Han, Y. Wang,G. Rakesh,Y. Li, R. Xu, Q. Yan,Q. Zhang, J. Mater. Chem. A, 2015, 3,19410 23. X. Yin, C. Tang, M. Chen, S. Adams, H. Wang, H. Gong, J. Mater. Chem. A 2013, 1, 7927. 24. J. R. Dahn, W. R. McKinnon, Solid State Ionics, 1987, 23, 1 25. J. J. Aubom, Y. L. Barberio, J. Electrochem. Soc., 1987, 134, 638 26. W.-J. Yu , L. Zhang , P.-X. Hou , F. Li , C. Liu ,H.-M. Cheng, Adv. Energy Mater. 2016, 6, 1501755. 27. D. Aurbach , E. Pollak , R. Elazari , G. Salitra , C. S. Kelley , J. Affi nito , J. Electrochem. Soc. 2009, 156, A694 28. P. Limthongkul, Y.-I. Jang, N.J. Dudney, Y.-M. Chiang, J. Power Sources 2003, 119, 604-609. 29. M.T. McDowell, S.W. Lee, C. Wang, W.D. Nix, Y. Cui, Adv. Mater. 2014, 24, 6034-6041. 30. C. Feng, L. Zhang, M. Yang, X. Song, H. Zhao, Z. Jia, K. Sun, G. Liu, ACS Appl. Mater. Interfaces 2015, 7, 15726-1573. 31. B. Qu, G. Ji, B. Ding,M. Lu, W. Chen,J. Y. Lee, ChemElectroChem 2015, 2, 1138-1143. 32. M. Mao, L. Jiang, L. Wu, M. Zhang, T. Wang, J. Mater. Chem. A, 2015, 3,13384. 33. F. Wang, S.-W. Kim, D.-H. Seo, K. Kang, L. Wang, D. Su, J. J. Vajo,J. Wang, J, Graetz1, Nat. Commun., 2015, 6, 6668. 34. J. Mao, X. Fan, C. Luo, C. Wang, ACS Appl. Mater. Interface., 2016, 8, 7147−7155. Chapter 5 1. M. Berginc, M. Topic, U. Opara Krasovec, Phys. Chem. Chem. Phys. 2014, 16, 12940. 2. B. Sheng , J. Liu , Z. Li , M. Wang , K. Zhu , J. Qiu, J. Wang, Mater. Lett. 2015, 144, 153-156. 3. X. Yuan, M. Li, H. Ruan, Y. Yang, Y. Liu, L. Zhang, J. Mater. Sci: Mater. Electron. 2016, 27, 6030-6034.
|