|
1. Leung, D. Y. C.; Caramanna, G.; Maroto-Valer, M. M., An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews 2014,39, 426-443. 2. Wu, X.; Yu, Y.; Qin, Z.; Zhang, Z., The Advances of Post-combustion CO2 Capture with Chemical Solvents: Review and Guidelines. Energy Procedia 2014,63, 1339-1346. 3. Halmann, M., Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 1978, 275, 115 - 116. 4. Song, X.; Ji, X.; Li, M.; Lin, W.; Luo, X.; Zhang, H., A Review on Development Prospect of CZTS Based Thin Film Solar Cells. International Journal of Photoenergy 2014,2014, 1-11. 5. Vanalakar, S. A.; Agawane, G. L.; Shin, S. W.; Suryawanshi, M. P.; Gurav, K. V.; Jeon, K. S.; Patil, P. S.; Jeong, C. W.; Kim, J. Y.; Kim, J. H., A review on pulsed laser deposited CZTS thin films for solar cell applications. Journal of Alloys and Compounds 2015,619, 109-121. 6. Liu, X.; Feng, Y.; Cui, H.; Liu, F.; Hao, X.; Conibeer, G.; Mitzi, D. B.; Green, M., The current status and future prospects of kesterite solar cells: a brief review. Progress in Photovoltaics: Research and Applications 2016,24 (6), 879-898. 7. 陳昶志. 二維奈米結構CuxZnySnzS之合成與性質研究探討. 2016. 8. David Avellaneda, M. T. S. N. a. P. K. N., Cu2SnS3 and Cu4SnS4 Thin Films via Chemical Deposition for Photovoltaic Application. Journal of The Electrochemical Society 2010,157 (6) D346-D352. 9. Mahesh P. Suryawanshi, U. V. G., Seung Wook Shin, Sachin A. Pawar, In Young Kim, Chang Woo Hong, Minhao Wu, Pramod S. Patil, Annasaheb V. Moholkar, and Jin Hyeok Kim, A Simple Aqueous Precursor Solution Processing of Earth-Abundant Cu2SnS3 Absorbers for Thin-Film Solar Cells. ACS Applied Materials & Interfaces2016,8 (18), pp 11603–11614. 10. Li, J.; Huang, J.; Zhang, Y.; Wang, Y.; Xue, C.; Jiang, G.; Liu, W.; Zhu, C., Solution-processed Cu2SnS3thin film solar cells. Royal Society of ChemistryAdvances2016,6 (63), 58786-58795. 11. Shen, Y.; Li, C.; Huang, R.; Tian, R.; Ye, Y.; Pan, L.; Koumoto, K.; Zhang, R.; Wan, C.; Wang, Y., Eco-friendly p-type Cu2SnS3 thermoelectric material: crystal structure and transport properties. Scientific Report2016,6, 32501. 12. Zawadzki, P.; Baranowski, L. L.; Peng, H.; Toberer, E. S.; Ginley, D. S.; Tumas, W.; Zakutayev, A.; Lany, S., Evaluation of photovoltaic materials within the Cu-Sn-S family. Applied Physics Letters 2013,103 (25), 253902. 13. Baranowski, L. L., Combinatorial development of Cu2SnS3 as an earth abundant photovoltaic absorber. 2013. 14. Baranowski, L. L.; Zawadzki, P.; Christensen, S.; Nordlund, D.; Lany, S.; Tamboli, A. C.; Gedvilas, L.; Ginley, D. S.; Tumas, W.; Toberer, E. S.; Zakutayev, A., Control of Doping in Cu2SnS3through Defects and Alloying. Chemistry of Materials 2014,26 (17), 4951-4959. 15. Chen, F.; Zai, J.; Xu, M.; Qian, X., 3D-hierarchical Cu3SnS4 flowerlike microspheres: controlled synthesis, formation mechanism and photocatalytic activity for H2 evolution from water. Journal of Materials Chemistry A 2013,1 (13), 4316. 16. Lokhande, A. C.; Gurav, K. V.; Jo, E.; Lokhande, C. D.; Kim, J. H., Chemical synthesis of Cu2SnS3 (CTS) nanoparticles: A status review. Journal of Alloys and Compounds 2016,656, 295-310. 17. Hall, S. R., Szymanski, J.T, Stewart, J.M, Kesterite Cu2(Zn Fe)SnS4 and stannite Cu2(Fe Zn)SnS4 structurally similar but distinct minerals. Canadian Mineralogist. Canadian Mineralogist 1978,16, 131-137. 18. Onoda, M.; Chen, X.-a.; Sato, A.; Wada, H., Crystal structure and twinning of monoclinic Cu2SnS3. Materials Research Bulletin 2000,35 (9), 1563-1570. 19. Liu, Q.; Zhao, Z.; Lin, Y.; Guo, P.; Li, S.; Pan, D.; Ji, X., Alloyed (ZnS)x(Cu2SnS3)1-x and (CuInS2)x(Cu2SnS3)1-x nanocrystals with arbitrary composition and broad tunable band gaps. Chemical Communications 2011,47 (3), 964-966. 20. Chalapathi, U.; Jayasree, Y.; Uthanna, S.; Sundara Raja, V., Effect of annealing temperature on the properties of spray deposited Cu2SnS3thin films. Physica Status Solidi (A) 2013,210 (11), 2384-2390. 21. Kamimura, S.; Sasaki, Y.; Kanaya, M.; Tsubota, T.; Ohno, T., Improvement of selectivity for CO2 reduction by using Cu2ZnSnS4 electrodes modified with different buffer layers (CdS and In2S3) under visible light irradiation. Royal Society of ChemistryAdvances2016,6 (113), 112594-112601. 22. Lokhande, A. C.; Chalapathy, R. B. V.; He, M.; Jo, E.; Gang, M.; Pawar, S. A.; Lokhande, C. D.; Kim, J. H., Development of Cu2SnS3 (CTS) thin film solar cells by physical techniques: A status review. Solar Energy Materials and Solar Cells 2016,153, 84-107. 23. Dong, Y.; He, J.; Li, X.; Chen, Y.; Sun, L.; Yang, P.; Chu, J., Study on the preheating duration of Cu2SnS3 thin films using RF magnetron sputtering technique for photovoltaics. Journal of Alloys and Compounds 2016,665, 69-75. 24. H. Zhang, M. X., S.Zhang,Y.Xiang, Fabrication of highly crystallized Cu2SnS3 thin films through sulfurization of Sn-rich metallic precursors. Journal of Alloys and Compounds2014,602 199–203. 25. Y.Dong, J. H., X.Li,W.Zhou,Y.Chen,L.Sun,P.Yang,J.Chu, Synthesisand optimized sulfurization time of Cu2SnS3 thin films obtained from stacked metallic precursors for solar cell application. Material Letters 160 2015,468–471. 26. Y.Dong, J. H., L.Sun,Y.Chen,P.Yang,J.Chu,, Effect of sulfurization temperature on properties of Cu2SnS3 thin films and solar cells prepared by sulfurization of stacked metallic precursors. Materials Science in Semiconductor Processing2015,38 171–176. 27. P.Zhao, S. C., Influence of sulfurization temperature on photoelectric properties Cu2SnS3 thin films deposited by magnetron sputtering. Advances in Materials Science and Engineering2013,1–4. 28. S. Sato, H. S., G.Shi,M.Sugiyama, Investigation of the sulfurization process of Cu2SnS3 thin films with stacked layers CBD-Cu/SnS by rapid thermal process. Materials Letters2015,12 757–760. 29. P.A.Fernandes, P. M. P. S., A.F.da Cunha, A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors. Journal of Physics D: Applied Physics2010,43(2010)215403. 30. Mitsuki Nakashima, J. F., Toshiyuki Yamaguchi and Masanobu Izaki, Cu2SnS3 thin-film solar cells fabricated by sulfurization from NaF/Cu/Sn stacked precursor. Applied Physics Express, 2015, Volume 8, Number 4. 31. M. Nakashima, T. Y., H. Itani, J. Sasano, M. Izaki, Cu2SnS3 thin film solar cells prepared by thermal crystallization of evaporated Cu/Sn precursors in sulfur and tin atmosphere. Physical Status Solidi B 2015,12, Issue 6, Pages 761–764. 32. Yuji Miyata, S. N., Yoji Akaki, Effects of H2S annealing on Cu-Sn-S thin films prepared from vacuum-evaporated Cu-Sn precursor. Physical Status Solidi B 2015,12, Issue 6, Pages 765–768. 33. R.B. Ettlinger, A. C., S.Canulescu,N.Pryds,J.Schou, Pulsedlaser deposition from ZnS and Cu2SnS3 multicomponent targets. Applied Surface Science2015,336 385–390. 34. S.A.Vanalakar, G. L. A.,A.S.Kamble,C.W.Hong,P.S.Patil,J.H.Kim,, Fabrication of Cu2SnS3 thin film solar cells using pulsed laser deposition techniqueSol. Solar Energy Materials and Solar Cells2015,138 1–8. 35. S.A.Vanalakar, G. L. A., S.W.Shin,H.S.Yang,P.S.Patil,J.Y.Kim,J.H.Kim, Non-vacuum mechanochemical route to the synthesis of Cu2SnS3 nano-ink for solar cellapplications. Acta Materialia2015,85 314–321. 36. Q. Chen, X. D., Y.Ni,S.Cheng,S.Zhuang, Study and enhance the photovoltaic properties of narrow-bandgap Cu2SnS3 solar cellby p-n junction interface modification. Journal of Colloid and Interface Science2012,376 327–330. 37. T.Nomura, T. M., T.Wada, Fabrication of Cu2SnS3 solar cells by screen-printing and high-pressures intering process. Japanese Journal of Applied Physics2014,53 05FW01. 38. X. Chen, H. W., A.Sato,M.Mieno, Synthesis, electrical conductivity, and crystal structure of Cu4Sn7S16 and structure refinement of Cu2SnS3. Journal of Solid State Chemistry1998,139 144–151. 39. S. Fiechter, M. M., G.Schmidt,W.Henrion,Y.Tomm, Phaserelations and optical properties of semiconducting ternary sulfides in the system Cu–Sn–S. Journal of Physics and Chemistry of Solids2003,64 1859–1862. 40. William D. Callister, J., Materials Science and Engineering. John Wiley & Sons 2006. 41. Bin Xu, Y. Z., Aimin Sun, Yan Li, Wen Li, Xiuxun Han, Direct solution coating of pure-phase Cu2SnS3 thin films without sulfurization. Journal of Materials Science: Materials in Electronics 2017,28, Issue 4, pp 3481–3486. 42. U. Chalapathi, Y. J., S. Uthanna, Sundara Raja Vanjari, Effect of annealing temperature on the properties of spray deposited Cu2SnS3 thin films. Physica Status Solidi (A) Applications and Materials 2013,210(11). 43. Qu, Y. D., X. Progress, challenge and perspective of heterogeneous photocatalysts. Chemical Society Reviews2013,Rev. 42, 2568–2580. 44. Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q.O.,; Dewulf, J., Malcata, F.X. and van Langenhove, H, Enhanced CO2 Fixation and Biofuel Production via Microalgae: Recent Developments and Future Directions. Trends Biotechnol 2010,28: 371–380. 45. Ho, S. H., Chen, C.Y., Lee, D.J. and Chang, J.S, Perspectives on Microalgal CO2-emission Mitigation Systems. A Review. Biotechnology Advance2011,29: 189–198. 46. Zeng, X. H., Danquah, M.K., Chen, X.D. and Lu, Y.H, Microalgae Bioengineering: From CO2 Fixation to Biofuel Production. Renewable Sustainable Energy Review2011,15: 3252–3260. 47. Blankenship, R. E., Tiede, D.M., Barber, J., Brudvig, G.W., Fleming, G., Ghirardi, M., Gunner, M.R., Junge, W., Kramer, D.M., Melis, A., Moore, T.A., Moser, C.C., Nocera, D.G., Nozik, A.J., Ort, D.R., Parson, W.W., Prince, R.C. and Sayre, R.T., Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement. Science 2011,332: 805–809. 48. Chueh, W. C. a. H., S.M, Ceria as a Thermochemical Reaction Medium for Selectively Generating Syngas or Methane from H2O and CO2. Chemistry & Sustainability2009,2: 735–739. 49. Abe, T., Yoshida, T., Tokita, S., Taguchi, F., Imaya, H; and Kaneko, M., Factors Affecting Selective Electrocatalytic CO2 Reduction with Cobalt Phthalocyanine Incorporated in a Polyvinylpyridine Membrane Coated on a Graphite Electrode. Journal of Electroanal. Chemistry1996,412: 125–132. 50. Jitaru, M., Lowy, D.A., Toma, M., Toma, B.C. and Oniciu,L, Electrochemical Reduction of Carbon Dioxide on Flat Metallic Cathodes. Journal of Applied Electrochemistry1997,27, 875–889.. 51. Sutin, N., Creutz, C. and Fujita, E, Photo-induced Generation of Dihydrogen and Reduction of Carbon Dioxide Using Transition Metal Complexes. Comments Inorganic Chemistry1997,19: 67–92. 52. Song, C. S., Global Challenges and Strategies for Control, Conversion and Utilization of CO2 for Sustainable Development Involving Energy Catalysis, Adsorption and Chemical Processing. Catalyst Today 115: 2–32. 53. Usubharatana, P., McMartin, D., Veawab, A. and Tontiwachwuthikul, P, Photocatalytic Process for CO2 Emission Reduction from Industrial Flue Gas Streams. Industrial & Engineering Chemistry Research2006,45: 2558–2568. 54. Indrakanti, V. P., Kubicki, J.D. and Schobert, H.H, Photoinduced Activation of CO2 on Ti-based Heterogeneous Catalysts: Current State, Chemical Physicsbased Insights and Outlook. Energy & Environmental Science2009,2: 745-758. 55. Morris, A. J., Meyer, G.J. and Fujita, E, Molecular Approaches to the Photocatalytic Reduction of Carbon Dioxide for Solar Fuels. Accounts of Chemical Research2009,42: 1983–1994. 56. Biswas, P., Wang, W.N. and An, W.J, The Energyenvironment Nexus: Aerosol Science and Technology Enabling Solutions. Frontiers of Environmental Science & Engineering2011,5: 299–312. 57. Windle, C. D. a. P., R.N., Advances in Molecular Photocatalytic and Electrocatalytic CO2 Reduction. Coord. Chemical Reviews2012,256: 2562–2570. 58. Inoue, T., Fujishima, A., Konishi, S. and Honda, K, Photoelectrocatalytic Reduction of Carbon Dioxide in Aquesous Suspensions of Semiconductor Powders. Nature 1979, 277: 637. 59. Liu, B. J., Torimoto, T. and Yoneyama, H., Photocatalytic Reduction of CO2 Using Surface-modified CdS Photocatalysts in Organic Solvents.Journal of Photochemistry and Photobiology1998,A 113: 93–97. 60. Wei-Ning Wang, J. S., Y. Jeffrey Yang, Pratim Biswas, Comparison of CO2 Photoreduction Systems: A Review. Aerosol and Air Quality Research 2014,14: 533–549. 61. 陳怡璇. 奈米導電高分子與二維奈米碳材於二氧化碳光催化還原之應用. 2017. 62. Koffyberg, F. P. a. B., F.A, A Photo-Electrochemical Determination of the Position of the Conduction and Valence Band Edges of P-Type Cuo. Journal of Applied Physics1982,53: 1173–1177. 63. Matsumoto, Y., Energy Positions of Oxide Semiconductors and Photocatalysis with Iron Complex Oxides. Journal of Solid State Chemistry1996,126: 227–234. 64. de Jongh, P. E., Vanmaekelbergh, D. and Kelly, J.J, Cu2O: A Catalyst for the Photochemical Decomposition of Water splitting.Chemical Communications1999,12: 1069–1070. 65. Xu, Y. a. S., M.A.A, The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals. American Mineralogist2000,85: 543–556. 66. Carlson, B., Leschkies, K., Aydil, E.S. and Zhu, X.Y, Valence Band Alignment at Cadmium Selenide Quantum Dot and Zinc Oxide (101) Interfaces. The Journal of Physical Chemistry2008,C 112: 8419–8423.
|