跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 15:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:歐陽愛雁
研究生(外文):Ai-Nhan Au-Duong
論文名稱:嵌有金屬有機骨架之細菌纖維複合膜及兒茶酚聚乙烯吡咯烷酮的製備分析與應用
論文名稱(外文):Metal Organic Frameworks Embedded Bacterial Cellulose Pellicle and Catechol Functionalized Poly (N-vinylpyrrolidone): Preparation, Characterization and Application
指導教授:李振綱李振綱引用關係
指導教授(外文):Cheng-Kang Lee
口試委員:今榮東洋子李振綱王勝仕王孟菊邱昱誠
口試委員(外文):Toyoko ImaeCheng-Kang LeeSteven S.-S. WangMeng-Jiy WangYu-Cheng Chiu
口試日期:2017-07-18
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:114
外文關鍵詞:ZIF-8nanocomposite based on bacterial celluloseiodine treatmentbioinspired PVPanti-foulingprotein resistanceeversible Addition Fragmentation chain Transfer (RAFT) polymerization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要討論金屬骨架結構嵌入細菌纖維素薄膜形成之功能性奈米複合膜及接有兒茶酚之聚乙烯吡咯烷酮(PVP)的合成和性質分析。並應用此奈米複合膜於環境保護上,兒茶酚PVP於材料表面塗佈產生抗生物污垢之功能。
沸石咪唑酸酯骨架-8 (ZIF-8)是一較容易獲得的金屬有機骨架的材料之一,已經被證明可以吸附多種活性物質,且具有極高之容量。細菌纖維素(BC)則為機械性質良好具超細三維(3-D)網絡結構之高含水量膜材,可用作ZIF-8沉積的理想基質。而氧化自聚合的多巴胺可以容易且緊密地在BC纖維表面上形成聚多巴胺。聚多巴胺塗層不僅可以作為ZIF-8形成的成核位點,而且可以防止鋅離子和纖維素之間的複合物形成,使鋅離子能充分參與與配體2-IM的反應而形成ZIF-8奈米顆粒。經 SEM觀察,所形成之ZIF-8奈米顆粒(~127nm)均勻地嵌入BC薄膜內,成為 BC@Dopa-ZIF奈米複合材料,其中約73%(w/w)是ZIF-8奈米顆粒。 BC@Dopa-ZIF可以非常有效地吸附碘蒸氣(1.87±0.18g I2/g納米複合材料)及碘溶液(1.31±0.02g I2/g納米複合材料)。由於聚多巴胺在近紅外線照射下可非常有效地產生熱,所以BC@Dopa-ZIF捕獲的碘在通過808nm激光的照射,可有效地被釋放出來,而使BC@Dopa-ZIF再生。光熱再生的BC@Dopa-ZIF於第二次使用時可維持99%的碘吸附能力,第六次使用仍可維持87%的能力。
使用由可逆加成斷裂鏈轉移(RAFT)聚合合成的羧基PVP,與咖啡酸一起可接附於聚賴氨酸(ε-PLL)結構上,製備出具兒茶酚官能基之聚乙烯吡咯烷酮(CA-PLL-PVP),可用於材料表面塗層防止生物結垢。 CA-PLL-PVP可以有效地塗附在玻璃,組織培養聚苯乙烯(TCPS)和聚丙烯多孔膜表面上,使得表面變得更加親水和耐蛋白吸附,在塗有CA-PLL-PVP的多孔PP膜上蛋白質的吸附量可減少約50%以上。
This thesis mainly investigates the synthesis and characterization of a metal organic frameworks embedded bacterial cellulose pellicle and catechol functionalized poly (N-vinylpyrrolidone) (PVP). The attempts to develop functional bionanocomposites and anti-biofouling surface for environmental and biomedical applications are reported.
Zeolitic imidazolate framework-8 (ZIF-8) is one of easily available metal organic frameworks and has been demonstrated to accommodate various active compounds in its mesoporous structure with very good capacity. Bacterial cellulose (BC) has a natural ultrafine three-dimensional (3-D) network structure with sufficiently high porosity, excellent biocompatibility, and mechanical stability, was used as a matrix to embed the in situ formed ZIF-8 nanoparticles. Polydopamine, oxidatively self-polymerized dopamine, could be easily and tightly coated on the surface of BC nanofibers. The polydopamine coating not only can act as a nucleation site for ZIF-8 formation but also prevents the complex formation between zinc ions and cellulose that leads to all the employed zinc ions participate the coordination reaction with ligand 2-IM for ZIF-8 formation. ZIF-8 was well embedded inside BC pellicle with uniform shape and size about 127 nm as observed by SEM. Approximately, 73% (w/w) of the BC-based nanocomposite (BC@Dopa-ZIF) is ZIF-8 nanoparticles. BC@Dopa-ZIF was demonstrated to have very good performance in capturing iodine from its vapor (1.87±0.18 g I2/g nanocomposite) and I2/KI solution (1.31±0.02 g I2/g nanocomposite). Since polydopamine is a good photothemal conversion agent under near-infrared irradiation, iodine captured by BC@Dopa-ZIF was effectively released by radiation of laser light of 808 nm. The photo -thermally regenerated BC@Dopa-ZIF maintained 99 % of its iodine adsorption capacity for the second use and 87 % for sixth use.
Catechol functionalized poly(N-vinylpyrrolidone) (CA-PLL-PVP) prepared from -PLL, caffeic acid, and carboxylic PVP synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization was employed for facile biofouling resistant surface coating. CA-PLL-PVP could be securely and effectively coated on glass, tissue culture polystyrene (TCPS) and polypropylene surfaces under a mild condition as characterized by ATR-FTIR and iodine complexation. The CA-PLL-PVP coated surfaces became more hydrophilic and protein resistant due to the present of PVP. The amount of protein adsorbed on CA-PLL-PVP coatings was about 50% less than that observed on pristine and PVP coated microporous PP membrane.
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Bacterial cellulose (BC) pellicles based nanocomposite 1
1.2.1 General introduction of ZIF-8 1
1.2.2 Structural features and properties of BC 4
1.2.3 Trend in the development of nanocomposite based BC 6
1.3 Catechol functionalized Poly (N-vinyl pyrrolidone) (CA-PVP) 7
1.3.1 Overview of PVP 7
1.3.2 Reversible Addition Fragmentation chain Transfer (RAFT) polymerization 8
1.3.3 Mussel-inspired polymer 8
1.3.3.1 Catechol chemistry and recent biomimetic polymers 8
1.3.3.2 Application of adhesive polymer 9
1.3.3.3 Bioinspired PVP 11
1.4 Motivation and research objective 12
1.4.1 Metal organic frameworks embedded bacterial cellulose pellicle 12
1.4.2 Novel catechol functionalized Poly (N-vinylpyrrolidone) 14
1.5 The outline of thesis 17
1.6 References 18
Chapter 2 Theory 34
2.1.2 Attachment mechanism 35
2.3.1 Mechanism of RAFT 38
2.3.2 RAFT agents 40
Chapter 3 Experimental Section 46
3.1 Materials 46
3.2 Methods 46
3.2.1 Preparation and characterization of ZIF-8 46
3.2.2 Preparation and characterization of BC pellicle based nanocomposite 47
3.2.3 Preparation and characterization of CA-PLL-PVP polymer 48
3.3 Measurements 50
3.3.1 UV-Vis spectroscopy 50
3.3.2 X-ray diffraction (XRD) 50
3.3.3 Brunauer–Emmett–Teller (BET) 50
3.3.4 Thermogravimetric analyzer (TGA) 50
3.3.5 1H NMR spectroscopy 51
3.3.6 Mechanical analysis 51
3.3.7 Field Emission Scanning Electron Microscopy (FE-SEM) 51
3.3.8 Attenuated reflection-Fourier transform infrared spectra (ATR-FTIR) 51
3.3.9 Contact angle measurement 51
3.4 Reference 52
Chapter 4 Metal organic framework embedded bacterial cellulose pellicle for iodine waste treatment 53
4.1 Introduction 53
4.2 Result and discussion 53
4.2.1 Preparation and characterization of ZIF-8 53
4.2.2 Deposition and Characterization of nanocomposite membrane 59
4.2.3 Adsorption/desorption of BC@Dopa-ZIF 64
4.2.4 Regenerate of Iodine uptaking 69
4.3 Conclusion 71
4.4 Reference 72
Chapter 5 Protein Resistant Surface Coating Based-on Catechol functionalized Poly (N-vinylpyrrolidone) 73
5.1 Introduction 73
5.2 Result and discussion 74
5.2.1 Preparation and characterization of CA-PLL-PVP 74
5.2.2 Preparation and characterization of CA-PVP 79
5.3.3.1 CA-PVP for surface modifications 79
5.3.3.2 Anti-biofouling property of CA-PVP coating 82
5.2.3 Preparation and characterization of CA-PLL-PVP 86
5.2.3.1 CA-PLL-PVP for surface modification 86
5.2.3.2 Anti-biofouling property of CA-PVP coating 90
5.3 Conclusion 91
5.4 Reference 92
Chapter 6 Summary 93
6.1 Summary 93
6.2 Reference 94
1. Shi, Z., et al., In situ nano-assembly of bacterial cellulose-polyaniline composites. RSC Advances, 2012. 2(3): p. 1040-1046.
2. Xu, D., et al., Micro-Nanostructured Polyaniline Assembled in Cellulose Matrix via Interfacial Polymerization for Applications in Nerve Regeneration. ACS Applied Materials & Interfaces, 2016. 8(27): p. 17090-17097.
3. Ciechańska, D., Multifunctional bacterial cellulose/chitosan composite materials for medical applications. Fibres and Textiles in Eastern Europe, 2004. 12(4): p. 69-72.
4. Czaja, W., et al., Microbial cellulose—the natural power to heal wounds. Biomaterials, 2006. 27(2): p. 145-151.
5. Liebner, F., et al., Bacterial Cellulose Aerogels: From Lightweight Dietary Food to Functional Materials, in Functional Materials from Renewable Sources. 2012, American Chemical Society. p. 57-74.
6. Shoda, M. and Y. Sugano, Recent advances in bacterial cellulose production. Biotechnology and Bioprocess Engineering, 2005. 10(1): p. 1.
7. Pan, Y., et al., Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem Commun (Camb), 2011. 47(7): p. 2071-3.
8. Park, K.S., et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 2006. 103(27): p. 10186-10191.
9. Tanaka, S., et al., Adsorption and Diffusion Phenomena in Crystal Size Engineered ZIF-8 MOF. The Journal of Physical Chemistry C, 2015. 119(51): p. 28430-28439.
10. Cravillon, J., et al., Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework. Chemistry of Materials, 2009. 21(8): p. 1410-1412.
11. Ameloot, R., et al., Direct Patterning of Oriented Metal–Organic Framework Crystals via Control over Crystallization Kinetics in Clear Precursor Solutions. Advanced Materials, 2010. 22(24): p. 2685-2688.
12. Huang, X.-C., et al., Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies. Angewandte Chemie International Edition, 2006. 45(10): p. 1557-1559.
13. Kida, K., et al., Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm, 2013. 15(9): p. 1794-1801.
14. Karagiaridi, O., et al., Opening ZIF-8: A Catalytically Active Zeolitic Imidazolate Framework of Sodalite Topology with Unsubstituted Linkers. Journal of the American Chemical Society, 2012. 134(45): p. 18790-18796.
15. Liang, K., et al., Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nature Communications, 2015. 6: p. 7240.
16. Li, S., et al., Novel Biological Functions of ZIF-NP as a Delivery Vehicle: High Pulmonary Accumulation, Favorable Biocompatibility, and Improved Therapeutic Outcome. Advanced Functional Materials, 2016. 26(16): p. 2715-2727.
17. Zheng, M., et al., One-Step Synthesis of Nanoscale Zeolitic Imidazolate Frameworks with High Curcumin Loading for Treatment of Cervical Cancer. ACS Applied Materials & Interfaces, 2015. 7(40): p. 22181-22187.
18. Pérez-Pellitero, J., et al., Adsorption of CO2, CH4, and N2 on Zeolitic Imidazolate Frameworks: Experiments and Simulations. Chemistry – A European Journal, 2010. 16(5): p. 1560-1571.
19. Fairen-Jimenez, D., et al., Opening the Gate: Framework Flexibility in ZIF-8 Explored by Experiments and Simulations. Journal of the American Chemical Society, 2011. 133(23): p. 8900-8902.
20. Cousin Saint Remi, J., et al., Biobutanol Separation with the Metal–Organic Framework ZIF-8. ChemSusChem, 2011. 4(8): p. 1074-1077.
21. Yuan, Y., et al., Computational screening of iodine uptake in zeolitic imidazolate frameworks in a water-containing system. Physical Chemistry Chemical Physics, 2016. 18(33): p. 23246-23256.
22. Sun, F., et al., Tandem postsynthetic modification of a metal-organic framework by thermal elimination and subsequent bromination: effects on absorption properties and photoluminescence. Angew Chem Int Ed Engl, 2013. 52(17): p. 4538-43.
23. Yin, Z., Q.X. Wang, and M.H. Zeng, Iodine release and recovery, influence of polyiodide anions on electrical conductivity and nonlinear optical activity in an interdigitated and interpenetrated bipillared-bilayer metal-organic framework. J Am Chem Soc, 2012. 134(10): p. 4857-63.
24. Sava, D.F., et al., Capture of volatile iodine, a gaseous fission product, by zeolitic imidazolate framework-8. J Am Chem Soc, 2011. 133(32): p. 12398-401.
25. Hughes, J.T., et al., Thermochemical evidence for strong iodine chemisorption by ZIF-8. J Am Chem Soc, 2013. 135(44): p. 16256-9.
26. Cui, P., et al., Temperature-controlled chiral and achiral copper tetrazolate metal-organic frameworks: syntheses, structures, and I2 adsorption. Inorg Chem, 2012. 51(4): p. 2303-10.
27. Xin, B., et al., An unusual copper(I) halide-based metal-organic framework with a cationic framework exhibiting the release/adsorption of iodine, ion-exchange and luminescent properties. Dalton Trans, 2013. 42(21): p. 7562-8.
28. Chaudhari, A.K., et al., Bi-porous metal-organic framework with hydrophilic and hydrophobic channels: selective gas sorption and reversible iodine uptake studies. CrystEngComm, 2013. 15(45): p. 9465-9471.
29. Sava, D.F., et al., Competitive I2 Sorption by Cu-BTC from Humid Gas Streams. Chemistry of Materials, 2013. 25(13): p. 2591-2596.
30. Hughes, J.T., et al., Thermochemical Evidence for Strong Iodine Chemisorption by ZIF-8. Journal of the American Chemical Society, 2013. 135(44): p. 16256-16259.
31. Chen, M., et al., Bacterial Cellulose Supported Gold Nanoparticles with Excellent Catalytic Properties. ACS Applied Materials & Interfaces, 2015. 7(39): p. 21717-21726.
32. Research Progress in Friendly Environmental Technology for the Production of Cellulose Products (Bacterial Cellulose and Its Application). Polymer-Plastics Technology and Engineering, 2004. 43(3): p. 797-820.
33. Matthysse, A.G., S. White, and R. Lightfoot, Genes required for cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol, 1995. 177(4): p. 1069-75.
34. Ross, P., R. Mayer, and M. Benziman, Cellulose biosynthesis and function in bacteria. Microbiological Reviews, 1991. 55(1): p. 35-58.
35. Napoli, C., F. Dazzo, and D. Hubbell, Production of Cellulose Microfibrils by Rhizobium. Applied Microbiology, 1975. 30(1): p. 123-131.
36. Zogaj, X., et al., The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol, 2001. 39(6): p. 1452-63.
37. Park, J.K., Y.H. Park, and J.Y. Jung, Production of bacterial cellulose byGluconacetobacter hansenii PJK isolated from rotten apple. Biotechnology and Bioprocess Engineering, 2003. 8(2): p. 83.
38. Research Progress in Production of Bacterial Cellulose by Aeration and Agitation Culture and Its Application as a New Industrial Material. Bioscience, Biotechnology, and Biochemistry, 1997. 61(2): p. 219-224.
39. Mühlethaler, K., The structure of bacterial cellulose. Biochimica et Biophysica Acta, 1949. 3: p. 527-535.
40. Brown, A.J., XLIII.-On an acetic ferment which forms cellulose. Journal of the Chemical Society, Transactions, 1886. 49(0): p. 432-439.
41. Dahman, Y., Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers. J Nanosci Nanotechnol, 2009. 9(9): p. 5105-22.
42. Sutherland, I.W., Structure-function relationships in microbial exopolysaccharides. Biotechnol Adv, 1994. 12(2): p. 393-448.
43. Lin, N. and A. Dufresne, Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, 2014. 59: p. 302-325.
44. Koizumi, S., et al., Bacterium organizes hierarchical amorphous structure in microbial cellulose. Eur Phys J E Soft Matter, 2008. 26(1-2): p. 137-42.
45. Lee, K.-Y., et al., High Performance Cellulose Nanocomposites: Comparing the Reinforcing Ability of Bacterial Cellulose and Nanofibrillated Cellulose. ACS Applied Materials & Interfaces, 2012. 4(8): p. 4078-4086.
46. Karina Abigail, H., et al., Polymer-Clay Nanocomposites and Composites: Structures, Characteristics, and their Applications in the Removal of Organic Compounds of Environmental Interest. Medicinal chemistry (Los Angeles), 2016. - 6(-): p. 201-210.
47. Favier, V., et al., Nanocomposite materials from latex and cellulose whiskers. Polymers for Advanced Technologies, 1995. 6(5): p. 351-355.
48. Arivizhivendhan, K.V., et al., Bioactive prodigiosin-impregnated cellulose matrix for the removal of pathogenic bacteria from aqueous solution. RSC Advances, 2015. 5(84): p. 68621-68631.
49. Nata, I.F. and C.K. Lee, Novel carbonaceous nanocomposite pellicle based on bacterial cellulose. Green Chemistry, 2010. 12(8): p. 1454-1459.
50. Nata, I.F., M. Sureshkumar, and C.-K. Lee, One-pot preparation of amine-rich magnetite/bacterial cellulose nanocomposite and its application for arsenate removal. RSC Advances, 2011. 1(4): p. 625-631.
51. Maneerung, T., S. Tokura, and R. Rujiravanit, Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydrate Polymers, 2008. 72(1): p. 43-51.
52. Zhang, T., et al., Biotemplated Synthesis of Gold Nanoparticle–Bacteria Cellulose Nanofiber Nanocomposites and Their Application in Biosensing. Advanced Functional Materials, 2010. 20(7): p. 1152-1160.
53. Evans, B.R., et al., Palladium-bacterial cellulose membranes for fuel cells. Biosensors and Bioelectronics, 2003. 18(7): p. 917-923.
54. Serafica, G., R. Mormino, and H. Bungay, Inclusion of solid particles in bacterial cellulose. Applied Microbiology and Biotechnology, 2002. 58(6): p. 756-760.
55. Khalid, A., et al., Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. Carbohydrate Polymers, 2017. 164: p. 214-221.
56. Janpetch, N., N. Saito, and R. Rujiravanit, Fabrication of bacterial cellulose-ZnO composite via solution plasma process for antibacterial applications. Carbohydrate Polymers, 2016. 148: p. 335-344.
57. Haaf, F., A. Sanner, and F. Straub, Polymers of N-Vinylpyrrolidone: Synthesis, Characterization and Uses. Polym J, 1985. 17(1): p. 143-152.
58. Laurent, S., et al., Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews, 2008. 108(6): p. 2064-2110.
59. Huber, D.L., Synthesis, Properties, and Applications of Iron Nanoparticles. Small, 2005. 1(5): p. 482-501.
60. Hubertus Folttmann, A.Q., Polyvinylpyrrolidone (PVP) – One of the Most Widely Used
Excipients in Pharmaceuticals: An Overview. Drug Delivery Technology, 2008. 8: p. 22-27.
61. Liu, X., et al., Poly(N-vinylpyrrolidone)-grafted poly(dimethylsiloxane) surfaces with tunable microtopography and anti-biofouling properties. RSC Advances, 2013. 3(14): p. 4716-4722.
62. Xiang, T., et al., Surface hydrophilic modification of polyethersulfone membranes by surface-initiated ATRP with enhanced blood compatibility. Colloids and Surfaces B: Biointerfaces, 2013. 110: p. 15-21.
63. Liu, X., et al., Poly(N-vinylpyrrolidone)-modified surfaces for biomedical applications. Macromol Biosci, 2013. 13(2): p. 147-54.
64. Yoshida K, S.Y., Kawahara S, Takeda T, Ishikawa T, Murakami T, Yoshioka A, Anaphylaxis to Polyvinylpyrrolidone in Povidone-Iodine for Impetigo Contagiosum in a Boy with Atopic Dermatitis. Int Arch Allergy Immunol, 2008. 146(2).
65. Chikazumi, S. and C.D.G. Jr, Physics of Ferromagnetism. 1997: Clarendon Press.
66. McDonnell G, R.A., Antiseptics and Disinfectants: Activity, Action, and Resistance. Clin Microbiol Rev., 1999. 12: p. 147–179.
67. Chiefari, J., et al., Living Free-Radical Polymerization by Reversible Addition−Fragmentation Chain Transfer:  The RAFT Process. Macromolecules, 1998. 31(16): p. 5559-5562.
68. Wu, Z., et al., Protein Adsorption on Poly(N-vinylpyrrolidone)-Modified Silicon Surfaces Prepared by Surface-Initiated Atom Transfer Radical Polymerization. Langmuir, 2009. 25(5): p. 2900-2906.
69. Torchilin, V.P., et al., Amphiphilic poly-N-vinylpyrrolidones: synthesis, properties and liposome surface modification. Biomaterials, 2001. 22(22): p. 3035-44.
70. Aroua, S., et al., RAFT synthesis of poly(vinylpyrrolidone) amine and preparation of a water-soluble C60-PVP conjugate. Polymer Chemistry, 2015. 6(14): p. 2616-2619.
71. Yamago, S., et al., Highly Versatile Organostibine Mediators for Living Radical Polymerization. Journal of the American Chemical Society, 2004. 126(43): p. 13908-13909.
72. Yamago, S., et al., Organotellurium-Mediated Controlled/Living Radical Polymerization Initiated by Direct C−Te Bond Photolysis. Journal of the American Chemical Society, 2009. 131(6): p. 2100-2101.
73. Waite, J.H., Nature's underwater adhesive specialist. International Journal of Adhesion and Adhesives, 1987. 7(1): p. 9-14.
74. Waite, J.H. and M.L. Tanzer, Polyphenolic Substance of Mytilus edulis: Novel Adhesive Containing L-Dopa and Hydroxyproline. Science, 1981. 212(4498): p. 1038-40.
75. Lee, Y., et al., Bioinspired Surface Immobilization of Hyaluronic Acid on Monodisperse Magnetite Nanocrystals for Targeted Cancer Imaging. Adv Mater, 2008. 20(21): p. 4154-4157.
76. Neto, A.I., et al., Combining biomimetic principles from the lotus leaf and mussel adhesive: polystyrene films with superhydrophobic and adhesive layers. RSC Advances, 2013. 3(24): p. 9352-9356.
77. Lee, H., et al., Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007. 318(5849): p. 426-30.
78. Kang, S.M., et al., One-Step Multipurpose Surface Functionalization by Adhesive Catecholamine. Advanced Functional Materials, 2012. 22(14): p. 2949-2955.
79. Neto, A.I., et al., Nanostructured polymeric coatings based on chitosan and dopamine-modified hyaluronic acid for biomedical applications. Small, 2014. 10(12): p. 2459-69.
80. Sun, J., et al., Reversible Swelling–Shrinking Behavior of Hydrogen-Bonded Free-Standing Thin Film Stabilized by Catechol Reaction. Langmuir, 2015. 31(18): p. 5147-5154.
81. Wu, J., et al., Mussel-inspired chemistry for robust and surface-modifiable multilayer films. Langmuir, 2011. 27(22): p. 13684-91.
82. Dalsin, J.L., et al., Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J Am Chem Soc, 2003. 125(14): p. 4253-8.
83. Park, J.Y., et al., Cell-repellant dextran coatings of porous titania using mussel adhesion chemistry. Macromol Biosci, 2013. 13(11): p. 1511-9.
84. Lee, C., et al., Bioinspired, calcium-free alginate hydrogels with tunable physical and mechanical properties and improved biocompatibility. Biomacromolecules, 2013. 14(6): p. 2004-13.
85. Chen, L., et al., Polydopamine-graft-PEG antifouling coating for quantitative analysis of food proteins by CE. Analytical Methods, 2012. 4(9): p. 2852-2859.
86. Wang, Y., et al., Mussel-inspired synthesis of magnetic polydopamine–chitosan nanoparticles as biosorbent for dyes and metals removal. Journal of the Taiwan Institute of Chemical Engineers, 2016. 61: p. 292-298.
87. Chen, J., et al., Anti-Ice Coating Inspired by Ice Skating. Small, 2014. 10(22): p. 4693-4699.
88. Yang, X., et al., Mussel-inspired human gelatin nanocoating for creating biologically adhesive surfaces. International Journal of Nanomedicine, 2014. 9: p. 2753-2765.
89. Li, L., et al., Novel Mussel-Inspired Injectable Self-Healing Hydrogel with Anti-Biofouling Property. Advanced Materials, 2015. 27(7): p. 1294-1299.
90. Burke, K.A., D.C. Roberts, and D.L. Kaplan, Silk Fibroin Aqueous-Based Adhesives Inspired by Mussel Adhesive Proteins. Biomacromolecules, 2016. 17(1): p. 237-245.
91. Hou, J., et al., Enzymatically crosslinked alginate hydrogels with improved adhesion properties. Polymer Chemistry, 2015. 6(12): p. 2204-2213.
92. Ryu, J.H., et al., Catechol-Functionalized Chitosan/Pluronic Hydrogels for Tissue Adhesives and Hemostatic Materials. Biomacromolecules, 2011. 12(7): p. 2653-2659.
93. Liu, Y., K. Ai, and L. Lu, Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chemical Reviews, 2014. 114(9): p. 5057-5115.
94. Gao, C., et al., Functionalizable and ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages. Biomaterials, 2010. 31(7): p. 1486-92.
95. Su, J., et al., Catechol Polymers for pH-Responsive, Targeted Drug Delivery to Cancer Cells. Journal of the American Chemical Society, 2011. 133(31): p. 11850-11853.
96. Mu, Y. and X. Wan, Simple but Strong: A Mussel-Inspired Hot Curing Adhesive Based on Polyvinyl Alcohol Backbone. Macromol Rapid Commun, 2016. 37(6): p. 545-50.
97. Narkar, A.R., et al., pH Responsive and Oxidation Resistant Wet Adhesive based on Reversible Catechol-Boronate Complexation. Chem Mater, 2016. 28(15): p. 5432-5439.
98. Li, A., et al., A mussel-inspired adhesive with stronger bonding strength under underwater conditions than under dry conditions. Chemical Communications, 2015. 51(44): p. 9117-9120.
99. Liu, Y. and K. Li, Development and characterization of adhesives from soy protein for bonding wood. International Journal of Adhesion and Adhesives, 2007. 27(1): p. 59-67.
100. Mosaiab, T., et al., Recyclable and stable silver deposited magnetic nanoparticles with poly (vinyl pyrrolidone)-catechol coated iron oxide for antimicrobial activity. Materials Science and Engineering: C, 2013. 33(7): p. 3786-3794.
101. McGuire, M.A., et al., Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI3. Chemistry of Materials, 2015. 27(2): p. 612-620.
102. Bakueva, L., et al., Luminescence of pure and iodine doped PPV: internal energetic structure revealed through spectral signatures. Synthetic Metals, 2002. 126(2–3): p. 207-211.
103. Almy, J., et al., Resonant Raman, Hot, and Cold Luminescence of Iodine in Rare Gas Matrixes. The Journal of Physical Chemistry A, 2000. 104(16): p. 3508-3520.
104. Gershenfeld, L. and B. Witlin, Iodine as an antiseptic. Annals of the New York Academy of Sciences, 1950. 53(1): p. 172-182.
105. Kim, G.H. and K.J. Yoon, Preparation and properties of polarizing films for liquid crystal display prepared using iodine vapor. Fibers and Polymers, 2013. 14(12): p. 1999-2005.
106. Bruchertseifer, H., et al., Fission product iodine release and retention in nuclear reactor accidents— experimental programme at PSI. Czechoslovak Journal of Physics, 2003. 53(1): p. A611-A619.
107. Leung, A.M., et al., Potential risks of excess iodine ingestion and exposure: statement by the american thyroid association public health committee. Thyroid, 2015. 25(2): p. 145-6.
108. Zimmermann, M.B., Iodine and Iodine Deficiency Disorders, in Present Knowledge in Nutrition. 2012, Wiley-Blackwell. p. 554-567.
109. Mohanambe, L. and S. Vasudevan, Insertion of Iodine in a Functionalized Inorganic Layered Solid. Inorganic Chemistry, 2004. 43(20): p. 6421-6425.
110. Subrahmanyam, K.S., et al., Chalcogenide Aerogels as Sorbents for Radioactive Iodine. Chemistry of Materials, 2015. 27(7): p. 2619-2626.
111. Szente, L., É. Fenyvesi, and J. Szejtli, Entrapment of Iodine with Cyclodextrins:  Potential Application of Cyclodextrins in Nuclear Waste Management. Environmental Science & Technology, 1999. 33(24): p. 4495-4498.
112. Yao, R.-X., et al., A Luminescent Zinc(II) Metal–Organic Framework (MOF) with Conjugated π-Electron Ligand for High Iodine Capture and Nitro-Explosive Detection. Inorganic Chemistry, 2016. 55(18): p. 9270-9275.
113. Zeng, M.-H., et al., Rigid Pillars and Double Walls in a Porous Metal-Organic Framework: Single-Crystal to Single-Crystal, Controlled Uptake and Release of Iodine and Electrical Conductivity. Journal of the American Chemical Society, 2010. 132(8): p. 2561-2563.
114. Wang, J., et al., Assembly of a Three-Dimensional Metal–Organic Framework with Copper(I) Iodide and 4-(Pyrimidin-5-yl) Benzoic Acid: Controlled Uptake and Release of Iodine. Crystal Growth & Design, 2015. 15(2): p. 915-920.
115. Dai, X., et al., The PLA/ZIF-8 Nanocomposite Membranes: The Diameter and Surface Roughness Adjustment by ZIF-8 Nanoparticles, High Wettability, Improved Mechanical Property, and Efficient Oil/Water Separation. Advanced Materials Interfaces, 2016. 3(24): p. 1600725-n/a.
116. Mahdi, E.M., A.K. Chaudhuri, and J.-C. Tan, Capture and immobilisation of iodine (I2) utilising polymer-based ZIF-8 nanocomposite membranes. Molecular Systems Design & Engineering, 2016. 1(1): p. 122-131.
117. Wang, L., et al., Layer-by-Layer Fabrication of High-Performance Polyamide/ZIF-8 Nanocomposite Membrane for Nanofiltration Applications. ACS Appl Mater Interfaces, 2015. 7(43): p. 24082-93.
118. Xu, Q. and L.-F. Chen, Ultraviolet spectra and structure of zinc–cellulose complexes in zinc chloride solution. Journal of Applied Polymer Science, 1999. 71(9): p. 1441-1446.
119. Banerjee, I., R.C. Pangule, and R.S. Kane, Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms. Advanced Materials, 2011. 23(6): p. 690-718.
120. Zhang, H. and M. Chiao, Anti-fouling Coatings of Poly(dimethylsiloxane) Devices for Biological and Biomedical Applications. Journal of Medical and Biological Engineering, 2015. 35(2): p. 143-155.
121. Shannon, M.A., et al., Science and technology for water purification in the coming decades. Nature, 2008. 452(7185): p. 301-310.
122. Lowe, S., N.M. O'Brien-Simpson, and L.A. Connal, Antibiofouling polymer interfaces: poly(ethylene glycol) and other promising candidates. Polymer Chemistry, 2015. 6(2): p. 198-212.
123. Krishnan, S., C.J. Weinman, and C.K. Ober, Advances in polymers for anti-biofouling surfaces. Journal of Materials Chemistry, 2008. 18(29): p. 3405-3413.
124. Zhang, M., E. Cabane, and J. Claverie, Transparent antifouling coatings via nanoencapsulation of a biocide. Journal of Applied Polymer Science, 2007. 105(6): p. 3826-3833.
125. Venault, A., et al., Zwitterionic Modifications for Enhancing the Antifouling Properties of Poly(vinylidene fluoride) Membranes. Langmuir, 2016. 32(16): p. 4113-4124.
126. Tiller, J.C., et al., Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci U S A, 2001. 98(11): p. 5981-5.
127. Zhu, X., et al., Immobilization of silver in polypropylene membrane for anti-biofouling performance. Biofouling, 2011. 27(7): p. 773-86.
128. Nurioglu, A.G., A.C.C. Esteves, and G. de With, Non-toxic, non-biocide-release antifouling coatings based on molecular structure design for marine applications. Journal of Materials Chemistry B, 2015. 3(32): p. 6547-6570.
129. Wu, Z., et al., Poly(N-vinylpyrrolidone)-modified poly(dimethylsiloxane) elastomers as anti-biofouling materials. Colloids and Surfaces B: Biointerfaces, 2012. 96: p. 37-43.
130. Yuan, H., et al., Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization. Applied Surface Science, 2016. 363: p. 483-489.
131. Kuypers, M.H., G.F.J. Steeghs, and E. Brinkman, Method of providing a substrate with a layer comprising a polyvinylbased hydrogel and a biochemically active material. 1990, Google Patents.
132. Liu, Z.-M., et al., Surface modification of polypropylene microfiltration membranes by graft polymerization of N-vinyl-2-pyrrolidone. European Polymer Journal, 2004. 40(9): p. 2077-2087.
133. El-Sawy, N.M. and A.Z.A. Elassar, Some modification on radiation graft polymerization of N-vinyl-2-pyrrolidone onto low density polyethylene with α,β-unsaturated nitrile. European Polymer Journal, 1998. 34(8): p. 1073-1080.
134. Liu, Z.-M., et al., Surface modification of polypropylene microfiltration membranes by the immobilization of poly(N-vinyl-2-pyrrolidone): a facile plasma approach. Journal of Membrane Science, 2005. 249(1–2): p. 21-31.
135. Meinhold, D., et al., Hydrogel Characteristics of Electron-Beam-Immobilized Poly(vinylpyrrolidone) Films on Poly(ethylene terephthalate) Supports. Langmuir, 2004. 20(2): p. 396-401.
136. Barros, J.A.G., et al., Poly(N-vinyl-2-pyrrolidone) hydrogels produced by Fenton reaction. Polymer, 2006. 47(26): p. 8414-8419.
137. Peniche, C., et al., Study of the thermal degradation of poly(N-vinyl-2-pyrrolidone) by thermogravimetry–FTIR. Journal of Applied Polymer Science, 1993. 50(3): p. 485-493.
138. Telford, A.M., et al., Thermally Cross-Linked PNVP Films As Antifouling Coatings for Biomedical Applications. ACS Applied Materials & Interfaces, 2010. 2(8): p. 2399-2408.
139. Jiang, J., et al., Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly(N-vinyl pyrrolidone). ACS Appl Mater Interfaces, 2013. 5(24): p. 12895-904.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top