|
1. Shi, Z., et al., In situ nano-assembly of bacterial cellulose-polyaniline composites. RSC Advances, 2012. 2(3): p. 1040-1046. 2. Xu, D., et al., Micro-Nanostructured Polyaniline Assembled in Cellulose Matrix via Interfacial Polymerization for Applications in Nerve Regeneration. ACS Applied Materials & Interfaces, 2016. 8(27): p. 17090-17097. 3. Ciechańska, D., Multifunctional bacterial cellulose/chitosan composite materials for medical applications. Fibres and Textiles in Eastern Europe, 2004. 12(4): p. 69-72. 4. Czaja, W., et al., Microbial cellulose—the natural power to heal wounds. Biomaterials, 2006. 27(2): p. 145-151. 5. Liebner, F., et al., Bacterial Cellulose Aerogels: From Lightweight Dietary Food to Functional Materials, in Functional Materials from Renewable Sources. 2012, American Chemical Society. p. 57-74. 6. Shoda, M. and Y. Sugano, Recent advances in bacterial cellulose production. Biotechnology and Bioprocess Engineering, 2005. 10(1): p. 1. 7. Pan, Y., et al., Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem Commun (Camb), 2011. 47(7): p. 2071-3. 8. Park, K.S., et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 2006. 103(27): p. 10186-10191. 9. Tanaka, S., et al., Adsorption and Diffusion Phenomena in Crystal Size Engineered ZIF-8 MOF. The Journal of Physical Chemistry C, 2015. 119(51): p. 28430-28439. 10. Cravillon, J., et al., Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework. Chemistry of Materials, 2009. 21(8): p. 1410-1412. 11. Ameloot, R., et al., Direct Patterning of Oriented Metal–Organic Framework Crystals via Control over Crystallization Kinetics in Clear Precursor Solutions. Advanced Materials, 2010. 22(24): p. 2685-2688. 12. Huang, X.-C., et al., Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies. Angewandte Chemie International Edition, 2006. 45(10): p. 1557-1559. 13. Kida, K., et al., Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm, 2013. 15(9): p. 1794-1801. 14. Karagiaridi, O., et al., Opening ZIF-8: A Catalytically Active Zeolitic Imidazolate Framework of Sodalite Topology with Unsubstituted Linkers. Journal of the American Chemical Society, 2012. 134(45): p. 18790-18796. 15. Liang, K., et al., Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nature Communications, 2015. 6: p. 7240. 16. Li, S., et al., Novel Biological Functions of ZIF-NP as a Delivery Vehicle: High Pulmonary Accumulation, Favorable Biocompatibility, and Improved Therapeutic Outcome. Advanced Functional Materials, 2016. 26(16): p. 2715-2727. 17. Zheng, M., et al., One-Step Synthesis of Nanoscale Zeolitic Imidazolate Frameworks with High Curcumin Loading for Treatment of Cervical Cancer. ACS Applied Materials & Interfaces, 2015. 7(40): p. 22181-22187. 18. Pérez-Pellitero, J., et al., Adsorption of CO2, CH4, and N2 on Zeolitic Imidazolate Frameworks: Experiments and Simulations. Chemistry – A European Journal, 2010. 16(5): p. 1560-1571. 19. Fairen-Jimenez, D., et al., Opening the Gate: Framework Flexibility in ZIF-8 Explored by Experiments and Simulations. Journal of the American Chemical Society, 2011. 133(23): p. 8900-8902. 20. Cousin Saint Remi, J., et al., Biobutanol Separation with the Metal–Organic Framework ZIF-8. ChemSusChem, 2011. 4(8): p. 1074-1077. 21. Yuan, Y., et al., Computational screening of iodine uptake in zeolitic imidazolate frameworks in a water-containing system. Physical Chemistry Chemical Physics, 2016. 18(33): p. 23246-23256. 22. Sun, F., et al., Tandem postsynthetic modification of a metal-organic framework by thermal elimination and subsequent bromination: effects on absorption properties and photoluminescence. Angew Chem Int Ed Engl, 2013. 52(17): p. 4538-43. 23. Yin, Z., Q.X. Wang, and M.H. Zeng, Iodine release and recovery, influence of polyiodide anions on electrical conductivity and nonlinear optical activity in an interdigitated and interpenetrated bipillared-bilayer metal-organic framework. J Am Chem Soc, 2012. 134(10): p. 4857-63. 24. Sava, D.F., et al., Capture of volatile iodine, a gaseous fission product, by zeolitic imidazolate framework-8. J Am Chem Soc, 2011. 133(32): p. 12398-401. 25. Hughes, J.T., et al., Thermochemical evidence for strong iodine chemisorption by ZIF-8. J Am Chem Soc, 2013. 135(44): p. 16256-9. 26. Cui, P., et al., Temperature-controlled chiral and achiral copper tetrazolate metal-organic frameworks: syntheses, structures, and I2 adsorption. Inorg Chem, 2012. 51(4): p. 2303-10. 27. Xin, B., et al., An unusual copper(I) halide-based metal-organic framework with a cationic framework exhibiting the release/adsorption of iodine, ion-exchange and luminescent properties. Dalton Trans, 2013. 42(21): p. 7562-8. 28. Chaudhari, A.K., et al., Bi-porous metal-organic framework with hydrophilic and hydrophobic channels: selective gas sorption and reversible iodine uptake studies. CrystEngComm, 2013. 15(45): p. 9465-9471. 29. Sava, D.F., et al., Competitive I2 Sorption by Cu-BTC from Humid Gas Streams. Chemistry of Materials, 2013. 25(13): p. 2591-2596. 30. Hughes, J.T., et al., Thermochemical Evidence for Strong Iodine Chemisorption by ZIF-8. Journal of the American Chemical Society, 2013. 135(44): p. 16256-16259. 31. Chen, M., et al., Bacterial Cellulose Supported Gold Nanoparticles with Excellent Catalytic Properties. ACS Applied Materials & Interfaces, 2015. 7(39): p. 21717-21726. 32. Research Progress in Friendly Environmental Technology for the Production of Cellulose Products (Bacterial Cellulose and Its Application). Polymer-Plastics Technology and Engineering, 2004. 43(3): p. 797-820. 33. Matthysse, A.G., S. White, and R. Lightfoot, Genes required for cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol, 1995. 177(4): p. 1069-75. 34. Ross, P., R. Mayer, and M. Benziman, Cellulose biosynthesis and function in bacteria. Microbiological Reviews, 1991. 55(1): p. 35-58. 35. Napoli, C., F. Dazzo, and D. Hubbell, Production of Cellulose Microfibrils by Rhizobium. Applied Microbiology, 1975. 30(1): p. 123-131. 36. Zogaj, X., et al., The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol, 2001. 39(6): p. 1452-63. 37. Park, J.K., Y.H. Park, and J.Y. Jung, Production of bacterial cellulose byGluconacetobacter hansenii PJK isolated from rotten apple. Biotechnology and Bioprocess Engineering, 2003. 8(2): p. 83. 38. Research Progress in Production of Bacterial Cellulose by Aeration and Agitation Culture and Its Application as a New Industrial Material. Bioscience, Biotechnology, and Biochemistry, 1997. 61(2): p. 219-224. 39. Mühlethaler, K., The structure of bacterial cellulose. Biochimica et Biophysica Acta, 1949. 3: p. 527-535. 40. Brown, A.J., XLIII.-On an acetic ferment which forms cellulose. Journal of the Chemical Society, Transactions, 1886. 49(0): p. 432-439. 41. Dahman, Y., Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers. J Nanosci Nanotechnol, 2009. 9(9): p. 5105-22. 42. Sutherland, I.W., Structure-function relationships in microbial exopolysaccharides. Biotechnol Adv, 1994. 12(2): p. 393-448. 43. Lin, N. and A. Dufresne, Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, 2014. 59: p. 302-325. 44. Koizumi, S., et al., Bacterium organizes hierarchical amorphous structure in microbial cellulose. Eur Phys J E Soft Matter, 2008. 26(1-2): p. 137-42. 45. Lee, K.-Y., et al., High Performance Cellulose Nanocomposites: Comparing the Reinforcing Ability of Bacterial Cellulose and Nanofibrillated Cellulose. ACS Applied Materials & Interfaces, 2012. 4(8): p. 4078-4086. 46. Karina Abigail, H., et al., Polymer-Clay Nanocomposites and Composites: Structures, Characteristics, and their Applications in the Removal of Organic Compounds of Environmental Interest. Medicinal chemistry (Los Angeles), 2016. - 6(-): p. 201-210. 47. Favier, V., et al., Nanocomposite materials from latex and cellulose whiskers. Polymers for Advanced Technologies, 1995. 6(5): p. 351-355. 48. Arivizhivendhan, K.V., et al., Bioactive prodigiosin-impregnated cellulose matrix for the removal of pathogenic bacteria from aqueous solution. RSC Advances, 2015. 5(84): p. 68621-68631. 49. Nata, I.F. and C.K. Lee, Novel carbonaceous nanocomposite pellicle based on bacterial cellulose. Green Chemistry, 2010. 12(8): p. 1454-1459. 50. Nata, I.F., M. Sureshkumar, and C.-K. Lee, One-pot preparation of amine-rich magnetite/bacterial cellulose nanocomposite and its application for arsenate removal. RSC Advances, 2011. 1(4): p. 625-631. 51. Maneerung, T., S. Tokura, and R. Rujiravanit, Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydrate Polymers, 2008. 72(1): p. 43-51. 52. Zhang, T., et al., Biotemplated Synthesis of Gold Nanoparticle–Bacteria Cellulose Nanofiber Nanocomposites and Their Application in Biosensing. Advanced Functional Materials, 2010. 20(7): p. 1152-1160. 53. Evans, B.R., et al., Palladium-bacterial cellulose membranes for fuel cells. Biosensors and Bioelectronics, 2003. 18(7): p. 917-923. 54. Serafica, G., R. Mormino, and H. Bungay, Inclusion of solid particles in bacterial cellulose. Applied Microbiology and Biotechnology, 2002. 58(6): p. 756-760. 55. Khalid, A., et al., Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. Carbohydrate Polymers, 2017. 164: p. 214-221. 56. Janpetch, N., N. Saito, and R. Rujiravanit, Fabrication of bacterial cellulose-ZnO composite via solution plasma process for antibacterial applications. Carbohydrate Polymers, 2016. 148: p. 335-344. 57. Haaf, F., A. Sanner, and F. Straub, Polymers of N-Vinylpyrrolidone: Synthesis, Characterization and Uses. Polym J, 1985. 17(1): p. 143-152. 58. Laurent, S., et al., Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews, 2008. 108(6): p. 2064-2110. 59. Huber, D.L., Synthesis, Properties, and Applications of Iron Nanoparticles. Small, 2005. 1(5): p. 482-501. 60. Hubertus Folttmann, A.Q., Polyvinylpyrrolidone (PVP) – One of the Most Widely Used Excipients in Pharmaceuticals: An Overview. Drug Delivery Technology, 2008. 8: p. 22-27. 61. Liu, X., et al., Poly(N-vinylpyrrolidone)-grafted poly(dimethylsiloxane) surfaces with tunable microtopography and anti-biofouling properties. RSC Advances, 2013. 3(14): p. 4716-4722. 62. Xiang, T., et al., Surface hydrophilic modification of polyethersulfone membranes by surface-initiated ATRP with enhanced blood compatibility. Colloids and Surfaces B: Biointerfaces, 2013. 110: p. 15-21. 63. Liu, X., et al., Poly(N-vinylpyrrolidone)-modified surfaces for biomedical applications. Macromol Biosci, 2013. 13(2): p. 147-54. 64. Yoshida K, S.Y., Kawahara S, Takeda T, Ishikawa T, Murakami T, Yoshioka A, Anaphylaxis to Polyvinylpyrrolidone in Povidone-Iodine for Impetigo Contagiosum in a Boy with Atopic Dermatitis. Int Arch Allergy Immunol, 2008. 146(2). 65. Chikazumi, S. and C.D.G. Jr, Physics of Ferromagnetism. 1997: Clarendon Press. 66. McDonnell G, R.A., Antiseptics and Disinfectants: Activity, Action, and Resistance. Clin Microbiol Rev., 1999. 12: p. 147–179. 67. Chiefari, J., et al., Living Free-Radical Polymerization by Reversible Addition−Fragmentation Chain Transfer: The RAFT Process. Macromolecules, 1998. 31(16): p. 5559-5562. 68. Wu, Z., et al., Protein Adsorption on Poly(N-vinylpyrrolidone)-Modified Silicon Surfaces Prepared by Surface-Initiated Atom Transfer Radical Polymerization. Langmuir, 2009. 25(5): p. 2900-2906. 69. Torchilin, V.P., et al., Amphiphilic poly-N-vinylpyrrolidones: synthesis, properties and liposome surface modification. Biomaterials, 2001. 22(22): p. 3035-44. 70. Aroua, S., et al., RAFT synthesis of poly(vinylpyrrolidone) amine and preparation of a water-soluble C60-PVP conjugate. Polymer Chemistry, 2015. 6(14): p. 2616-2619. 71. Yamago, S., et al., Highly Versatile Organostibine Mediators for Living Radical Polymerization. Journal of the American Chemical Society, 2004. 126(43): p. 13908-13909. 72. Yamago, S., et al., Organotellurium-Mediated Controlled/Living Radical Polymerization Initiated by Direct C−Te Bond Photolysis. Journal of the American Chemical Society, 2009. 131(6): p. 2100-2101. 73. Waite, J.H., Nature's underwater adhesive specialist. International Journal of Adhesion and Adhesives, 1987. 7(1): p. 9-14. 74. Waite, J.H. and M.L. Tanzer, Polyphenolic Substance of Mytilus edulis: Novel Adhesive Containing L-Dopa and Hydroxyproline. Science, 1981. 212(4498): p. 1038-40. 75. Lee, Y., et al., Bioinspired Surface Immobilization of Hyaluronic Acid on Monodisperse Magnetite Nanocrystals for Targeted Cancer Imaging. Adv Mater, 2008. 20(21): p. 4154-4157. 76. Neto, A.I., et al., Combining biomimetic principles from the lotus leaf and mussel adhesive: polystyrene films with superhydrophobic and adhesive layers. RSC Advances, 2013. 3(24): p. 9352-9356. 77. Lee, H., et al., Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007. 318(5849): p. 426-30. 78. Kang, S.M., et al., One-Step Multipurpose Surface Functionalization by Adhesive Catecholamine. Advanced Functional Materials, 2012. 22(14): p. 2949-2955. 79. Neto, A.I., et al., Nanostructured polymeric coatings based on chitosan and dopamine-modified hyaluronic acid for biomedical applications. Small, 2014. 10(12): p. 2459-69. 80. Sun, J., et al., Reversible Swelling–Shrinking Behavior of Hydrogen-Bonded Free-Standing Thin Film Stabilized by Catechol Reaction. Langmuir, 2015. 31(18): p. 5147-5154. 81. Wu, J., et al., Mussel-inspired chemistry for robust and surface-modifiable multilayer films. Langmuir, 2011. 27(22): p. 13684-91. 82. Dalsin, J.L., et al., Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J Am Chem Soc, 2003. 125(14): p. 4253-8. 83. Park, J.Y., et al., Cell-repellant dextran coatings of porous titania using mussel adhesion chemistry. Macromol Biosci, 2013. 13(11): p. 1511-9. 84. Lee, C., et al., Bioinspired, calcium-free alginate hydrogels with tunable physical and mechanical properties and improved biocompatibility. Biomacromolecules, 2013. 14(6): p. 2004-13. 85. Chen, L., et al., Polydopamine-graft-PEG antifouling coating for quantitative analysis of food proteins by CE. Analytical Methods, 2012. 4(9): p. 2852-2859. 86. Wang, Y., et al., Mussel-inspired synthesis of magnetic polydopamine–chitosan nanoparticles as biosorbent for dyes and metals removal. Journal of the Taiwan Institute of Chemical Engineers, 2016. 61: p. 292-298. 87. Chen, J., et al., Anti-Ice Coating Inspired by Ice Skating. Small, 2014. 10(22): p. 4693-4699. 88. Yang, X., et al., Mussel-inspired human gelatin nanocoating for creating biologically adhesive surfaces. International Journal of Nanomedicine, 2014. 9: p. 2753-2765. 89. Li, L., et al., Novel Mussel-Inspired Injectable Self-Healing Hydrogel with Anti-Biofouling Property. Advanced Materials, 2015. 27(7): p. 1294-1299. 90. Burke, K.A., D.C. Roberts, and D.L. Kaplan, Silk Fibroin Aqueous-Based Adhesives Inspired by Mussel Adhesive Proteins. Biomacromolecules, 2016. 17(1): p. 237-245. 91. Hou, J., et al., Enzymatically crosslinked alginate hydrogels with improved adhesion properties. Polymer Chemistry, 2015. 6(12): p. 2204-2213. 92. Ryu, J.H., et al., Catechol-Functionalized Chitosan/Pluronic Hydrogels for Tissue Adhesives and Hemostatic Materials. Biomacromolecules, 2011. 12(7): p. 2653-2659. 93. Liu, Y., K. Ai, and L. Lu, Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chemical Reviews, 2014. 114(9): p. 5057-5115. 94. Gao, C., et al., Functionalizable and ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages. Biomaterials, 2010. 31(7): p. 1486-92. 95. Su, J., et al., Catechol Polymers for pH-Responsive, Targeted Drug Delivery to Cancer Cells. Journal of the American Chemical Society, 2011. 133(31): p. 11850-11853. 96. Mu, Y. and X. Wan, Simple but Strong: A Mussel-Inspired Hot Curing Adhesive Based on Polyvinyl Alcohol Backbone. Macromol Rapid Commun, 2016. 37(6): p. 545-50. 97. Narkar, A.R., et al., pH Responsive and Oxidation Resistant Wet Adhesive based on Reversible Catechol-Boronate Complexation. Chem Mater, 2016. 28(15): p. 5432-5439. 98. Li, A., et al., A mussel-inspired adhesive with stronger bonding strength under underwater conditions than under dry conditions. Chemical Communications, 2015. 51(44): p. 9117-9120. 99. Liu, Y. and K. Li, Development and characterization of adhesives from soy protein for bonding wood. International Journal of Adhesion and Adhesives, 2007. 27(1): p. 59-67. 100. Mosaiab, T., et al., Recyclable and stable silver deposited magnetic nanoparticles with poly (vinyl pyrrolidone)-catechol coated iron oxide for antimicrobial activity. Materials Science and Engineering: C, 2013. 33(7): p. 3786-3794. 101. McGuire, M.A., et al., Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI3. Chemistry of Materials, 2015. 27(2): p. 612-620. 102. Bakueva, L., et al., Luminescence of pure and iodine doped PPV: internal energetic structure revealed through spectral signatures. Synthetic Metals, 2002. 126(2–3): p. 207-211. 103. Almy, J., et al., Resonant Raman, Hot, and Cold Luminescence of Iodine in Rare Gas Matrixes. The Journal of Physical Chemistry A, 2000. 104(16): p. 3508-3520. 104. Gershenfeld, L. and B. Witlin, Iodine as an antiseptic. Annals of the New York Academy of Sciences, 1950. 53(1): p. 172-182. 105. Kim, G.H. and K.J. Yoon, Preparation and properties of polarizing films for liquid crystal display prepared using iodine vapor. Fibers and Polymers, 2013. 14(12): p. 1999-2005. 106. Bruchertseifer, H., et al., Fission product iodine release and retention in nuclear reactor accidents— experimental programme at PSI. Czechoslovak Journal of Physics, 2003. 53(1): p. A611-A619. 107. Leung, A.M., et al., Potential risks of excess iodine ingestion and exposure: statement by the american thyroid association public health committee. Thyroid, 2015. 25(2): p. 145-6. 108. Zimmermann, M.B., Iodine and Iodine Deficiency Disorders, in Present Knowledge in Nutrition. 2012, Wiley-Blackwell. p. 554-567. 109. Mohanambe, L. and S. Vasudevan, Insertion of Iodine in a Functionalized Inorganic Layered Solid. Inorganic Chemistry, 2004. 43(20): p. 6421-6425. 110. Subrahmanyam, K.S., et al., Chalcogenide Aerogels as Sorbents for Radioactive Iodine. Chemistry of Materials, 2015. 27(7): p. 2619-2626. 111. Szente, L., É. Fenyvesi, and J. Szejtli, Entrapment of Iodine with Cyclodextrins: Potential Application of Cyclodextrins in Nuclear Waste Management. Environmental Science & Technology, 1999. 33(24): p. 4495-4498. 112. Yao, R.-X., et al., A Luminescent Zinc(II) Metal–Organic Framework (MOF) with Conjugated π-Electron Ligand for High Iodine Capture and Nitro-Explosive Detection. Inorganic Chemistry, 2016. 55(18): p. 9270-9275. 113. Zeng, M.-H., et al., Rigid Pillars and Double Walls in a Porous Metal-Organic Framework: Single-Crystal to Single-Crystal, Controlled Uptake and Release of Iodine and Electrical Conductivity. Journal of the American Chemical Society, 2010. 132(8): p. 2561-2563. 114. Wang, J., et al., Assembly of a Three-Dimensional Metal–Organic Framework with Copper(I) Iodide and 4-(Pyrimidin-5-yl) Benzoic Acid: Controlled Uptake and Release of Iodine. Crystal Growth & Design, 2015. 15(2): p. 915-920. 115. Dai, X., et al., The PLA/ZIF-8 Nanocomposite Membranes: The Diameter and Surface Roughness Adjustment by ZIF-8 Nanoparticles, High Wettability, Improved Mechanical Property, and Efficient Oil/Water Separation. Advanced Materials Interfaces, 2016. 3(24): p. 1600725-n/a. 116. Mahdi, E.M., A.K. Chaudhuri, and J.-C. Tan, Capture and immobilisation of iodine (I2) utilising polymer-based ZIF-8 nanocomposite membranes. Molecular Systems Design & Engineering, 2016. 1(1): p. 122-131. 117. Wang, L., et al., Layer-by-Layer Fabrication of High-Performance Polyamide/ZIF-8 Nanocomposite Membrane for Nanofiltration Applications. ACS Appl Mater Interfaces, 2015. 7(43): p. 24082-93. 118. Xu, Q. and L.-F. Chen, Ultraviolet spectra and structure of zinc–cellulose complexes in zinc chloride solution. Journal of Applied Polymer Science, 1999. 71(9): p. 1441-1446. 119. Banerjee, I., R.C. Pangule, and R.S. Kane, Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms. Advanced Materials, 2011. 23(6): p. 690-718. 120. Zhang, H. and M. Chiao, Anti-fouling Coatings of Poly(dimethylsiloxane) Devices for Biological and Biomedical Applications. Journal of Medical and Biological Engineering, 2015. 35(2): p. 143-155. 121. Shannon, M.A., et al., Science and technology for water purification in the coming decades. Nature, 2008. 452(7185): p. 301-310. 122. Lowe, S., N.M. O'Brien-Simpson, and L.A. Connal, Antibiofouling polymer interfaces: poly(ethylene glycol) and other promising candidates. Polymer Chemistry, 2015. 6(2): p. 198-212. 123. Krishnan, S., C.J. Weinman, and C.K. Ober, Advances in polymers for anti-biofouling surfaces. Journal of Materials Chemistry, 2008. 18(29): p. 3405-3413. 124. Zhang, M., E. Cabane, and J. Claverie, Transparent antifouling coatings via nanoencapsulation of a biocide. Journal of Applied Polymer Science, 2007. 105(6): p. 3826-3833. 125. Venault, A., et al., Zwitterionic Modifications for Enhancing the Antifouling Properties of Poly(vinylidene fluoride) Membranes. Langmuir, 2016. 32(16): p. 4113-4124. 126. Tiller, J.C., et al., Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci U S A, 2001. 98(11): p. 5981-5. 127. Zhu, X., et al., Immobilization of silver in polypropylene membrane for anti-biofouling performance. Biofouling, 2011. 27(7): p. 773-86. 128. Nurioglu, A.G., A.C.C. Esteves, and G. de With, Non-toxic, non-biocide-release antifouling coatings based on molecular structure design for marine applications. Journal of Materials Chemistry B, 2015. 3(32): p. 6547-6570. 129. Wu, Z., et al., Poly(N-vinylpyrrolidone)-modified poly(dimethylsiloxane) elastomers as anti-biofouling materials. Colloids and Surfaces B: Biointerfaces, 2012. 96: p. 37-43. 130. Yuan, H., et al., Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization. Applied Surface Science, 2016. 363: p. 483-489. 131. Kuypers, M.H., G.F.J. Steeghs, and E. Brinkman, Method of providing a substrate with a layer comprising a polyvinylbased hydrogel and a biochemically active material. 1990, Google Patents. 132. Liu, Z.-M., et al., Surface modification of polypropylene microfiltration membranes by graft polymerization of N-vinyl-2-pyrrolidone. European Polymer Journal, 2004. 40(9): p. 2077-2087. 133. El-Sawy, N.M. and A.Z.A. Elassar, Some modification on radiation graft polymerization of N-vinyl-2-pyrrolidone onto low density polyethylene with α,β-unsaturated nitrile. European Polymer Journal, 1998. 34(8): p. 1073-1080. 134. Liu, Z.-M., et al., Surface modification of polypropylene microfiltration membranes by the immobilization of poly(N-vinyl-2-pyrrolidone): a facile plasma approach. Journal of Membrane Science, 2005. 249(1–2): p. 21-31. 135. Meinhold, D., et al., Hydrogel Characteristics of Electron-Beam-Immobilized Poly(vinylpyrrolidone) Films on Poly(ethylene terephthalate) Supports. Langmuir, 2004. 20(2): p. 396-401. 136. Barros, J.A.G., et al., Poly(N-vinyl-2-pyrrolidone) hydrogels produced by Fenton reaction. Polymer, 2006. 47(26): p. 8414-8419. 137. Peniche, C., et al., Study of the thermal degradation of poly(N-vinyl-2-pyrrolidone) by thermogravimetry–FTIR. Journal of Applied Polymer Science, 1993. 50(3): p. 485-493. 138. Telford, A.M., et al., Thermally Cross-Linked PNVP Films As Antifouling Coatings for Biomedical Applications. ACS Applied Materials & Interfaces, 2010. 2(8): p. 2399-2408. 139. Jiang, J., et al., Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly(N-vinyl pyrrolidone). ACS Appl Mater Interfaces, 2013. 5(24): p. 12895-904.
|