|
1. Shukla, V., M. Bajpai, D. Singh, M. Singh, and R. Shukla, Review of basic chemistry of UV-curing technology. Pigment & Resin Technology, 2004. 33(5): p. 272-279. 2. Chua, C.K., K.F. Leong, and C.S. Lim, Rapid prototyping: principles and applications. 2010: World Scientific.: p. 35-43. 3. Azari, A. and S. Nikzad, The evolution of rapid prototyping in dentistry: a review. Rapid Prototyping Journal, 2009. 15(3): p. 216-225. 4. Melchels, F.P., J. Feijen, and D.W. Grijpma, A review on stereolithography and its applications in biomedical engineering. Biomaterials, 2010. 31(24): p. 6121-6130. 5. Dickens, S.H., J. Stansbury, K. Choi, and C. Floyd, Photopolymerization kinetics of methacrylate dental resins. Macromolecules, 2003. 36(16): p. 6043-6053. 6. Tanodekaew, S., S. Channasanon, and P. Uppanan, Preparation and degradation study of photocurable oligolactide‐HA composite: A potential resin for stereolithography application. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2014. 102(3): p. 604-611. 7. Oesterreicher, A., A. Moser, M. Edler, H. Griesser, S. Schlögl, M. Pichelmayer, and T. Griesser, Investigating Photocurable Thiol‐Yne Resins for Biomedical Materials. Macromolecular Materials and Engineering, 2017. 302(5). 8. Karahan, Ö., D.K. Balta, N. Arsu, and D. Avci, Synthesis and evaluations of novel photoinitiators with side-chain benzophenone, derived from alkyl α-hydroxymethacrylates. Journal of Photochemistry and Photobiology A: Chemistry, 2014. 274: p. 43-49. 9. Bax, D.V., A. Kondyurin, A. Waterhouse, D.R. McKenzie, A.S. Weiss, and M.M. Bilek, Surface plasma modification and tropoelastin coating of a polyurethane co-polymer for enhanced cell attachment and reduced thrombogenicity. Biomaterials, 2014. 35(25): p. 6797-6809. 10. Kulkarni, M., A. Mazare, P. Schmuki, and A. Iglič, Biomaterial surface modification of titanium and titanium alloys for medical applications. Nanomedicine, 2014. 5: p. 112-130. 11. McCullough, E.J. and V.K. Yadavalli, Surface modification of fused deposition modeling ABS to enable rapid prototyping of biomedical microdevices. Journal of Materials Processing Technology, 2013. 213(6): p. 947-954. 12. Domingos, M., F. Intranuovo, A. Gloria, R. Gristina, L. Ambrosio, P. Bártolo, and P. Favia, Improved osteoblast cell affinity on plasma-modified 3-D extruded PCL scaffolds. Acta Biomaterialia, 2013. 9(4): p. 5997-6005. 13. Okada, M., K. Matsuda, T. Sato, K. Yamada, K. Matsuda, and T. Hiaki, Polymerization of Methyl Methacrylate Initiated by Atmospheric Pressure Plasma Jet. Journal of Photopolymer Science and Technology, 2015. 28(3): p. 461-464. 14. Strobel, M., C.S. Lyons, and K. Mittal, Plasma surface modification of polymers: relevance to adhesion. 1994: Vsp. 15. Liu, S., M.M. Vareiro, S. Fraser, and A.T.A. Jenkins, Control of attachment of bovine serum albumin to pulse plasma-polymerized maleic anhydride by variation of pulse conditions. Langmuir, 2005. 21(19): p. 8572-8575. 16. Vassallo, E., A. Cremona, L. Laguardia, and E. Mesto, Preparation of plasma-polymerized SiO x-like thin films from a mixture of hexamethyldisiloxane and oxygen to improve the corrosion behaviour. Surface and Coatings Technology, 2006. 200(9): p. 3035-3040. 17. Brinkmann, N., D. Sommer, G. Micard, G. Hahn, and B. Terheiden, Electrical, optical and structural investigation of plasma-enhanced chemical-vapor-deposited amorphous silicon oxynitride films for solar cell applications. Solar Energy Materials and Solar Cells, 2013. 108: p. 180-188. 18. Pappas, S.P., Radiation curing: science and technology. 2013: Springer Science & Business Media. 19. Bunning, T.J., L.V. Natarajan, V.P. Tondiglia, and R. Sutherland, Holographic polymer-dispersed liquid crystals (H-PDLCs) 1. Annual Review of Materials Science, 2000. 30(1): p. 83-115. 20. Sun, H.-B. and S. Kawata, Two-photon photopolymerization and 3D lithographic microfabrication, in NMR• 3D Analysis• Photopolymerization. 2004, Springer. p. 169-273. 21. Decker, C., Kinetic study and new applications of UV radiation curing. Macromolecular Rapid Communications, 2002. 23(18): p. 1067-1093. 22. Mishra, M. and Y. Yagci, Handbook of vinyl polymers: radical polymerization, process, and technology. 2008: CRC press. 23. Yağci, Y. and I. Reetz, Externally stimulated initiator systems for cationic polymerization. Progress in Polymer Science, 1998. 23(8): p. 1485-1538. 24. Yagci, Y., S. Jockusch, and N.J. Turro, Photoinitiated polymerization: advances, challenges, and opportunities. Macromolecules, 2010. 43(15): p. 6245-6260. 25. Ge, Z., C. Huang, C. Zhou, and Y. Luo, Synthesis of a novel UV crosslinking waterborne siloxane–polyurethane. Progress in Organic Coatings, 2016. 90: p. 304-308. 26. Jiang, B., T. Zhang, L. Zhao, Z. Xu, and Y. Huang, Effect of Polymerizable Photoinitiators on the UV‐polymerization behaviors of photosensitive polysiloxane. Journal of Polymer Science Part A: Polymer Chemistry, 2017. 55(10): p. 1696-1705. 27. Gu, B.K., D.J. Choi, S.J. Park, M.S. Kim, C.M. Kang, and C.-H. Kim, 3-dimensional bioprinting for tissue engineering applications. Biomaterials Research, 2016. 20(1): p. 12. 28. Elomaa, L., C.-C. Pan, Y. Shanjani, A. Malkovskiy, J.V. Seppälä, and Y. Yang, Three-dimensional fabrication of cell-laden biodegradable poly (ethylene glycol-co-depsipeptide) hydrogels by visible light stereolithography. Journal of Materials Chemistry B, 2015. 3(42): p. 8348-8358. 29. Li, B.-c., H. Chang, K.-f. Ren, and J. Ji, Substrate-mediated delivery of gene complex nanoparticles via polydopamine coating for enhancing competitiveness of endothelial cells. Colloids and Surfaces B: Biointerfaces, 2016. 147: p. 172-179. 30. Zangmeister, R.A., T.A. Morris, and M.J. Tarlov, Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. Langmuir, 2013. 29(27): p. 8619-8628. 31. Lee, H., S.M. Dellatore, W.M. Miller, and P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007. 318(5849): p. 426-430. 32. Lynge, M.E., R. van der Westen, A. Postma, and B. Städler, Polydopamine—a nature-inspired polymer coating for biomedical science. Nanoscale, 2011. 3(12): p. 4916-4928. 33. Wang, J.-l., B.-c. Li, Z.-j. Li, K.-f. Ren, L.-j. Jin, S.-m. Zhang, H. Chang, Y.-x. Sun, and J. Ji, Electropolymerization of dopamine for surface modification of complex-shaped cardiovascular stents. Biomaterials, 2014. 35(27): p. 7679-7689. 34. Lee, Y.B., Y.M. Shin, J.-h. Lee, I. Jun, J.K. Kang, J.-C. Park, and H. Shin, Polydopamine-mediated immobilization of multiple bioactive molecules for the development of functional vascular graft materials. Biomaterials, 2012. 33(33): p. 8343-8352. 35. Madhurakkat Perikamana, S.K., J. Lee, Y.B. Lee, Y.M. Shin, E.J. Lee, A.G. Mikos, and H. Shin, Materials from mussel-inspired chemistry for cell and tissue engineering applications. Biomacromolecules, 2015. 16(9): p. 2541-2555. 36. Chen, X., C. Cortez-Jugo, G.H. Choi, M. Björnmalm, Y. Dai, P.J. Yoo, and F. Caruso, Patterned Poly (dopamine) Films for Enhanced Cell Adhesion. Bioconjugate Chemistry, 2016. 37. Duan, L.J., Y. Liu, J. Kim, and D.J. Chung, Bioinspired and biocompatible adhesive coatings using poly (acrylic acid)‐grafted dopamine. Journal of Applied Polymer Science, 2013. 130(1): p. 131-137. 38. Chien, H.-W. and W.-B. Tsai, Fabrication of tunable micropatterned substrates for cell patterning via microcontact printing of polydopamine with poly (ethylene imine)-grafted copolymers. Acta Biomaterialia, 2012. 8(10): p. 3678-3686. 39. Bittencourt, J.A., Fundamentals of plasma physics. 2013: Springer Science & Business Media. 40. Nishikawa, K. and M. Wakatani, Plasma Physics: basic theory with fusion applications. Vol. 8. 2013: Springer Science & Business Media. 41. Chu, P.K., J. Chen, L. Wang, and N. Huang, Plasma-surface modification of biomaterials. Materials Science and Engineering: R: Reports, 2002. 36(5): p. 143-206. 42. Pankaj, S.K., C. Bueno-Ferrer, N. Misra, V. Milosavljević, C. O'Donnell, P. Bourke, K. Keener, and P. Cullen, Applications of cold plasma technology in food packaging. Trends in Food Science & Technology, 2014. 35(1): p. 5-17. 43. Economou, D.J., Pulsed plasma etching for semiconductor manufacturing. Journal of Physics D: Applied Physics, 2014. 47(30): p. 303001. 44. Ben Salem, D., O. Carton, H. Fakhouri, J. Pulpytel, and F. Arefi‐Khonsari, Deposition of water stable plasma polymerized acrylic acid/MBA organic coatings by atmospheric pressure air plasma jet. Plasma Processes and Polymers, 2014. 11(3): p. 269-278. 45. Testrich, H., H. Rebl, B. Finke, F. Hempel, B. Nebe, and J. Meichsner, Aging effects of plasma polymerized ethylenediamine (PPEDA) thin films on cell-adhesive implant coatings. Materials Science and Engineering: C, 2013. 33(7): p. 3875-3880. 46. Donnelly, V.M. and A. Kornblit, Plasma etching: Yesterday, today, and tomorrow. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2013. 31(5): p. 050825. 47. Chan, C.-M., T.-M. Ko, and H. Hiraoka, Polymer surface modification by plasmas and photons. Surface Science Reports, 1996. 24(1-2): p. 1-54. 48. Song, W., X. Wang, Q. Wang, D. Shao, and X. Wang, Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides. Physical Chemistry Chemical Physics, 2015. 17(1): p. 398-406. 49. Gupta, B., C. Plummer, I. Bisson, P. Frey, and J. Hilborn, Plasma-induced graft polymerization of acrylic acid onto poly (ethylene terephthalate) films: characterization and human smooth muscle cell growth on grafted films. Biomaterials, 2002. 23(3): p. 863-871. 50. Inagaki, N., Plasma surface modification and plasma polymerization. 1996: CRC Press. 51. Flamm, D.L., O. Auciello, and R. d'Agostino, Plasma deposition, treatment, and etching of polymers: the treatment and etching of polymers. 2012: Elsevier. 52. Bhatt, S., J. Pulpytel, and F. Arefi-Khonsari, Low and atmospheric plasma polymerisation of nanocoatings for bio-applications. Surf. Innov., 2015. 3. 53. Molina, R., P. Jovancic, S. Vilchez, T. Tzanov, and C. Solans, In situ chitosan gelation initiated by atmospheric plasma treatment. Carbohydrate Polymers, 2014. 103: p. 472-479. 54. Molina, R., C. Ligero, P. Jovančić, and E. Bertran, In situ polymerization of aqueous solutions of NIPAAm initiated by atmospheric plasma treatment. Plasma Processes and Polymers, 2013. 10(6): p. 506-516. 55. Ravichandran, R., S. Sundarrajan, J.R. Venugopal, S. Mukherjee, and S. Ramakrishna, Applications of conducting polymers and their issues in biomedical engineering. Journal of the Royal Society Interface, 2010: p. rsif20100120. 56. Zhang, Z., J. Dou, F. Yan, X. Zheng, X. Li, and S. Fang, Plasma polymerized pyrrole films for biological applications: correlation between protein adsorption properties and characteristics. Plasma Processes and Polymers, 2011. 8(10): p. 923-931. 57. Koduru, H.K., L. Marino, J. Vallivedu, C.J. Choi, and N. Scaramuzza, Microstructural, wetting, and dielectric properties of plasma polymerized polypyrrole thin films. Journal of Applied Polymer Science, 2016. 133(38). 58. Li, C., J. Hsieh, and Y. Lee, Effects of radio frequency power on the microstructures and properties of plasma polymerized polypyrrole thin films. Vacuum, 2017. 140: p. 132-138. 59. Li, C., J. Hsieh, and Y. Lee, Fabrication and structural characterization of plasma polymerized polypyrrole thin film. Surface and Coatings Technology, 2017. 320: p. 206-212. 60. Yuan, Y. and T.R. Lee, Contact angle and wetting properties, in Surface science techniques. 2013, Springer. p. 3-34. 61. Cui, J., Y. Ju, K. Liang, H. Ejima, S. Lörcher, K.T. Gause, J.J. Richardson, and F. Caruso, Nanoscale engineering of low-fouling surfaces through polydopamine immobilisation of zwitterionic peptides. Soft Matter, 2014. 10(15): p. 2656-2663. 62. Li, H., B. Luo, W. Wen, C. Zhou, L. Tian, and S. Ramakrishna, Deferoxamine immobilized poly (D, L-lactide) membrane via polydopamine adhesive coating: The influence on mouse embryo osteoblast precursor cells and human umbilical vein endothelial cells. Materials Science and Engineering: C, 2017. 70: p. 701-709. 63. Zhao, C., G. Zhang, X. Xu, F. Yang, and Y. Yang, Rapidly self-assembled polydopamine coating membranes with polyhexamethylene guanidine: Formation, characterization and antifouling evaluation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017. 512: p. 41-50. 64. Xu, X., Q. Zheng, B.L. Song, X. Cao, S. Liu, and C. Yao, Polydopamine induced in-situ growth of Au nanoparticles on reduced graphene oxide as an efficient biosensing platform for ultrasensitive detection of bisphenol A. Electrochimica Acta, 2017. 65. Wang, S., Q. Lin, J. Chen, H. Gao, D. Fu, and S. Shen, Biocompatible polydopamine-encapsulated gadolinium-loaded carbon nanotubes for MRI and color mapping guided photothermal dissection of tumor metastasis. Carbon, 2017. 112: p. 53-62. 66. Yu, X., J. Walsh, and M. Wei, Covalent immobilization of collagen on titanium through polydopamine coating to improve cellular performances of MC3T3-E1 cells. RSC Advances, 2014. 4(14): p. 7185-7192. 67. Liu, Y., K. Ai, and L. Lu, Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chemical Reviews, 2014. 114(9): p. 5057-5115. 68. Ahmadi, A., B. Ramezanzadeh, and M. Mahdavian, Hybrid silane coating reinforced with silanized graphene oxide nanosheets with improved corrosion protective performance. RSC Advances, 2016. 6(59): p. 54102-54112. 69. YanáMa, X., Hyperbranched polysiloxane grafted graphene for improved tribological performance of bismaleimide composites. RSC Advances, 2015. 5(17): p. 12578-12582. 70. Zhang, M., D. Zang, J. Shi, Z. Gao, C. Wang, and J. Li, Superhydrophobic cotton textile with robust composite film and flame retardancy. RSC Advances, 2015. 5(83): p. 67780-67786. 71. Zain, N.M., R. Hussain, and M.R.A. Kadir, Surface modification of yttria stabilized zirconia via polydopamine inspired coating for hydroxyapatite biomineralization. Applied Surface Science, 2014. 322: p. 169-176. 72. Fu, J., Z. Chen, M. Wang, S. Liu, J. Zhang, J. Zhang, R. Han, and Q. Xu, Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chemical Engineering Journal, 2015. 259: p. 53-61. 73. Qiu, Z., J. Wang, K. Yang, J. Guo, W. Wang, R. Pan, and G. Wu, Simultaneous enhancements of mechanical properties and hydrophilic properties of polypropylene via nano‐silicon dioxide modified by polydopamine. Journal of Applied Polymer Science, 2017. 134(26). 74. Singer, F., M. Schlesak, C. Mebert, S. Höhn, and S. Virtanen, Corrosion Properties of Polydopamine Coatings Formed in One-Step Immersion Process on Magnesium. ACS Applied Materials & Interfaces, 2015. 7(48): p. 26758-26766. 75. Gittens, R.A., L. Scheideler, F. Rupp, S.L. Hyzy, J. Geis-Gerstorfer, Z. Schwartz, and B.D. Boyan, A review on the wettability of dental implant surfaces II: biological and clinical aspects. Acta Biomaterialia, 2014. 10(7): p. 2907-2918. 76. Lee, J.-H., J.-S. Kwon, J.-y. Om, Y.-H. Kim, E.-H. Choi, K.-M. Kim, and K.-N. Kim, Cell immobilization on polymer by air atmospheric pressure plasma jet treatment. Japanese Journal of Applied Physics, 2014. 53(8): p. 086202. 77. Doherty, K.G., J.S. Oh, P. Unsworth, A. Bowfield, C.M. Sheridan, P. Weightman, J.W. Bradley, and R.L. Williams, Polystyrene Surface Modification for Localized Cell Culture Using a Capillary Dielectric Barrier Discharge Atmospheric‐Pressure Microplasma Jet. Plasma Processes and Polymers, 2013. 10(11): p. 978-989. 78. Kuzminova, A., M. Vandrovcová, A. Shelemin, O. Kylián, A. Choukourov, J. Hanuš, L. Bačáková, D. Slavínská, and H. Biederman, Treatment of poly (ethylene terephthalate) foils by atmospheric pressure air dielectric barrier discharge and its influence on cell growth. Applied Surface Science, 2015. 357: p. 689-695. 79. Vasquez‐Ortega, M., M. Ortega, J. Morales, M.G. Olayo, G.J. Cruz, and R. Olayo, Core–shell polypyrrole nanoparticles obtained by atmospheric pressure plasma polymerization. Polymer International, 2014. 63(12): p. 2023-2029. 80. Gan, J.K., Y.S. Lim, N.M. Huang, and H.N. Lim, Hybrid silver nanoparticle/nanocluster-decorated polypyrrole for high-performance supercapacitors. RSC Advances, 2015. 5(92): p. 75442-75450. 81. Lu, M., R. Xie, Z. Liu, Z. Zhao, H. Xu, and Z. Mao, Enhancement in electrical conductive property of polypyrrole‐coated cotton fabrics using cationic surfactant. Journal of Applied Polymer Science, 2016. 133(32). 82. Kamal, M. and A. Bhuiyan, Structural and optical characterization of plasma polymerized pyrrole monolayer thin films. Advances in Optoelectronic Materials (AOM), 2013. 1(2): p. 11-17. 83. Steele, J.G., G. Johnson, C. McFarland, B. Dalton, T. Gengenbach, R. Chatelier, P.A. Underwood, and H. Griesser, Roles of serum vitronectin and fibronectin in initial attachment of human vein endothelial cells and dermal fibroblasts on oxygen-and nitrogen-containing surfaces made by radiofrequency plasmas. Journal of Biomaterials Science, Polymer Edition, 1995. 6(6): p. 511-532. 84. Kaklamani, G., N. Mehrban, J. Bowen, H. Dong, L. Grover, and A. Stamboulis, Nitrogen plasma surface modification enhances cellular compatibility of aluminosilicate glass. Materials Letters, 2013. 111: p. 225-229. 85. Dams, R., D. Vangeneugden, and D. Vanderzande, Atmospheric pressure plasma polymerization of in situ doped polypyrrole. Open Plasma Phys. J, 2013. 6: p. 7-13.
|