|
1. Xu, H., et al., Effect of graphene Fermi level on the Raman scattering intensity of molecules on graphene. ACS nano, 2011. 5(7): p. 5338-5344. 2. Fan, X., et al., Functionalized graphene nanoplatelets from ball milling for energy applications. Current Opinion in Chemical Engineering, 2016. 11: p. 52-58. 3. Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974. 26(2): p. 163-166. 4. Jeanmaire, D.L. and R.P. Van Duyne, Surface raman spectroelectrochemistry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977. 84(1): p. 1-20. 5. Albrecht, M.G. and J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc, 1977. 99(15): p. 5215-5217. 6. Schatz, G.C., M.A. Young, and R.P. Van Duyne, Electromagnetic Mechanism of SERS, in Surface-Enhanced Raman Scattering: Physics and Applications, K. Kneipp, M. Moskovits, and H. Kneipp, Editors. 2006, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 19-45. 7. Kelly, K.L., et al., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. Journal of Physical Chemistry B-Condensed Phase, 2003. 107(3): p. 668-677. 8. Jensen, L., C.M. Aikens, and G.C. Schatz, Electronic structure methods for studying surface-enhanced Raman scattering. Chemical Society Reviews, 2008. 37(5): p. 1061-1073. 9. Vivoni, A., et al., Ab initio frequency calculations of pyridine adsorbed on an adatom model of a SERS active site of a silver surface. The Journal of Physical Chemistry B, 2003. 107(23): p. 5547-5557. 10. Wu, D.Y., et al., Density functional theory study of surface‐enhanced Raman scattering spectra of pyridine adsorbed on noble and transition metal surfaces. Journal of Raman Spectroscopy, 2005. 36(6‐7): p. 533-540. 11. Cardini, G. and M. Muniz-Miranda, Density functional study on the adsorption of pyrazole onto silver colloidal particles. The Journal of Physical Chemistry B, 2002. 106(27): p. 6875-6880. 12. Cardini, G., et al., A density functional study of the SERS spectra of pyridine adsorbed on silver clusters. Theoretical Chemistry Accounts, 2007. 117(3): p. 451-458. 13. Zayak, A., et al., Chemical Raman enhancement of organic adsorbates on metal surfaces. Physical review letters, 2011. 106(8): p. 083003. 14. Ling, X., et al., Probing the Effect of Molecular Orientation on the Intensity of Chemical Enhancement Using Graphene‐Enhanced Raman Spectroscopy. Small, 2012. 8(9): p. 1365-1372. 15. Feng, S., et al., Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering. Science Advances, 2016. 2(7): p. e1600322. 16. Osawa, M., et al., Charge-transfer resonance Raman process in surface-enhanced Raman-scattering from P-aminothiophenol adsorbed on silver-herzberg-teller contribution. Journal of Physical Chemistry, 1994. 98(48): p. 12702-12707. 17. Arenas, J.F., et al., Role of the electrode potential in the charge-transfer mechanism of surface-enhanced Raman scattering. The Journal of Physical Chemistry B, 2003. 107(47): p. 13143-13149. 18. Dolgov, L., et al., Graphene-Enhanced Raman Scattering from the Adenine Molecules. Nanoscale research letters, 2016. 11(1): p. 197. 19. Mao, H., et al., Mildly O 2 plasma treated CVD graphene as a promising platform for molecular sensing. Carbon, 2014. 76: p. 212-219. 20. Barros, E. and M. Dresselhaus, Theory of Raman enhancement by two-dimensional materials: Applications for graphene-enhanced Raman spectroscopy. Physical Review B, 2014. 90(3): p. 035443. 21. Yin, Y., et al., Significantly Increased Raman Enhancement on MoX2 (X= S, Se) Monolayers upon Phase Transition. Advanced Functional Materials, 2017. 22. Han, M.Y., et al., Energy Band-Gap Engineering of Graphene Nanoribbons. Physical Review Letters, 2007. 98(20): p. 206805. 23. Barone, V., O. Hod, and G.E. Scuseria, Electronic structure and stability of semiconducting graphene nanoribbons. Nano letters, 2006. 6(12): p. 2748-2754. 24. Son, Y.-W., M.L. Cohen, and S.G. Louie, Energy gaps in graphene nanoribbons. Physical review letters, 2006. 97(21): p. 216803. 25. Chen, Z., et al., Graphene nano-ribbon electronics. Physica E: Low-dimensional Systems and Nanostructures, 2007. 40(2): p. 228-232. 26. Datta, S.S., et al., Crystallographic etching of few-layer graphene. arXiv preprint arXiv:0806.3965, 2008. 27. Jiao, L., et al., Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009. 458(7240): p. 877-880. 28. Jacobberger, R.M., et al., Direct oriented growth of armchair graphene nanoribbons on germanium. Nature communications, 2015. 6. 29. Li, Y.-S., et al., Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons. Scientific Reports, 2016. 6: p. 22755. 30. Jiao, L., et al., Facile synthesis of high-quality graphene nanoribbons. Nature nanotechnology, 2010. 5(5): p. 321-325. 31. Kosynkin, D.V., et al., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009. 458(7240): p. 872-876. 32. Das, A., et al., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature nanotechnology, 2008. 3(4): p. 210-215. 33. Santos, J.E., et al., Electronic doping of graphene by deposited transition metal atoms. Physical Review B, 2011. 84(8): p. 085430. 34. Miwa, R., et al., Doping of graphene adsorbed on the a-SiO2 surface. Applied Physics Letters, 2011. 99(16): p. 163108. 35. Anand, B., et al., Nonlinear optical properties of boron doped single-walled carbon nanotubes. Nanoscale, 2013. 5(16): p. 7271-7276. 36. Yu, W.J., et al., Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping. Nano letters, 2011. 11(11): p. 4759-4763. 37. Ayala, P., et al., The doping of carbon nanotubes with nitrogen and their potential applications. Carbon, 2010. 48(3): p. 575-586. 38. Lherbier, A., et al., Charge transport in chemically doped 2D graphene. Physical review letters, 2008. 101(3): p. 036808. 39. Wei, D., et al., Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano letters, 2009. 9(5): p. 1752-1758. 40. Zheng, B., P. Hermet, and L. Henrard, Scanning tunneling microscopy simulations of nitrogen-and boron-doped graphene and single-walled carbon nanotubes. ACS nano, 2010. 4(7): p. 4165-4173. 41. Wang, H., et al., Synthesis of boron‐doped graphene monolayers using the sole solid feedstock by chemical vapor deposition. Small, 2013. 9(8): p. 1316-1320. 42. Lv, R. and M. Terrones, Towards new graphene materials: doped graphene sheets and nanoribbons. Materials Letters, 2012. 78: p. 209-218. 43. Wang, X., et al., Heteroatom-doped graphene materials: syntheses, properties and applications. Chemical Society Reviews, 2014. 43(20): p. 7067-7098. 44. Gierz, I., et al., Atomic hole doping of graphene. Nano letters, 2008. 8(12): p. 4603-4607. 45. Wei, D., et al., Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano lett, 2009. 9(5): p. 1752-1758. 46. Ayala, P., et al., CVD growth of single‐walled B‐doped carbon nanotubes. physica status solidi (b), 2008. 245(10): p. 1935-1938. 47. Li, J.-C., et al., Growth of metal-catalyst-free nitrogen-doped metallic single-wall carbon nanotubes. Nanoscale, 2014. 6(20): p. 12065-12070. 48. Chang, C.-K., et al., Band gap engineering of chemical vapor deposited graphene by in situ BN doping. ACS nano, 2013. 7(2): p. 1333-1341. 49. Yu, D., et al., Metal-free carbon nanomaterials become more active than metal catalysts and last longer. The journal of physical chemistry letters, 2010. 1(14): p. 2165-2173. 50. Borowiak-Palen, E., et al., Efficient production of B-substituted single-wall carbon nanotubes. Chemical physics letters, 2003. 378(5): p. 516-520. 51. Liu, Y., et al., Elemental superdoping of graphene and carbon nanotubes. Nature communications, 2016. 7. 52. Wang, H., et al., Nitrogen-doped graphene nanosheets with excellent lithium storage properties. Journal of Materials Chemistry, 2011. 21(14): p. 5430-5434. 53. Borowiec, J. and J. Zhang, Hydrothermal Synthesis of Boron-Doped Graphene for Electrochemical Sensing of Guanine. Journal of The Electrochemical Society, 2015. 162(12): p. B332-B336. 54. Su, Y., et al., Low-temperature synthesis of nitrogen/sulfur co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction. Carbon, 2013. 62: p. 296-301. 55. Wang, B., et al., Direct and large scale electric arc discharge synthesis of boron and nitrogen doped single-walled carbon nanotubes and their electronic properties. Carbon, 2009. 47(8): p. 2112-2115. 56. Rani, P. and V. Jindal, Designing band gap of graphene by B and N dopant atoms. RSC Advances, 2013. 3(3): p. 802-812. 57. Liang, X., et al., Direct observation of enhanced plasmon-driven catalytic reaction activity of Au nanoparticles supported on reduced graphene oxides by SERS. Physical Chemistry Chemical Physics, 2015. 17(15): p. 10176-10181. 58. Liang, X., et al., Tuning plasmonic and chemical enhancement for SERS detection on graphene-based Au hybrids. Nanoscale, 2015. 7(47): p. 20188-20196. 59. Ku, K., et al., Characterization of graphene-based supercapacitors fabricated on Al foils using Au or Pd thin films as interlayers. Synthetic Metals, 2010. 160(23): p. 2613-2617. 60. Seol, M., et al., Nano-Design of 3D Electrodes for Highly Efficient Quantum Dot-Sensitized Solar Energy Conversion. Journal of The Electrochemical Society, 2014. 161(12): p. H809-H815. 61. Fan, Z., R. Kanchanapally, and P.C. Ray, Hybrid graphene oxide based ultrasensitive SERS probe for label-free biosensing. The Journal of Physical Chemistry Letters, 2013. 4(21): p. 3813-3818. 62. Lan, N.T., et al., Photochemical decoration of silver nanoparticles on graphene oxide nanosheets and their optical characterization. Journal of Alloys and Compounds, 2014. 615: p. 843-848. 63. Zhou, H., et al., Thickness-dependent morphologies and surface-enhanced Raman scattering of Ag deposited on n-layer graphenes. The Journal of Physical Chemistry C, 2011. 115(23): p. 11348-11354. 64. Shen, J., et al., Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano research, 2010. 3(5): p. 339-349. 65. Fu, W.L., S.J. Zhen, and C.Z. Huang, Controllable preparation of graphene oxide/metal nanoparticle hybrids as surface-enhanced Raman scattering substrates for 6-mercaptopurine detection. RSC Advances, 2014. 4(31): p. 16327-16332. 66. Goncalves, G., et al., Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chemistry of Materials, 2009. 21(20): p. 4796-4802. 67. Richmonds, C. and R.M. Sankaran, Plasma-liquid electrochemistry: rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations. Applied Physics Letters, 2008. 93(13): p. 131501. 68. Park, S.-J. and J.G. Eden, 13–30 micron diameter microdischarge devices: Atomic ion and molecular emission at above atmospheric pressures. Applied Physics Letters, 2002. 81(22): p. 4127-4129. 69. Mohamed, M., et al., Excimer emission from microhollow cathode argon discharges. Journal of Physics D: Applied Physics, 2003. 36(23): p. 2922. 70. Lin, L. and Q. Wang, Microplasma: a new generation of technology for functional nanomaterial synthesis. Plasma Chemistry and Plasma Processing, 2015. 35(6): p. 925-962. 71. Becker, K.H., K.H. Schoenbach, and J.G. Eden, Microplasmas and applications. Journal of Physics D: Applied Physics, 2006. 39(3): p. R55. 72. Mariotti, D. and R.M. Sankaran, Microplasmas for nanomaterials synthesis. Journal of Physics D: Applied Physics, 2010. 43(32): p. 323001. 73. Ren, W., Y. Fang, and E. Wang, A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids. Acs Nano, 2011. 5(8): p. 6425-6433. 74. Low, P.S., W.A. Henne, and D.D. Doorneweerd, Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Accounts of chemical research, 2007. 41(1): p. 120-129. 75. Hu, C., et al., Fabrication of reduced graphene oxide and sliver nanoparticle hybrids for Raman detection of absorbed folic acid: a potential cancer diagnostic probe. ACS applied materials & interfaces, 2013. 5(11): p. 4760-4768. 76. Saito, R., et al., Double resonance Raman spectroscopy of single-wall carbon nanotubes. New Journal of Physics, 2003. 5(1): p. 157. 77. Li, Y.-S., et al., Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons. Scientific reports, 2016. 6. 78. Xing, M., et al., Highly-dispersed boron-doped graphene nanoribbons with enhanced conductibility and photocatalysis. Chemical Communications, 2014. 50(50): p. 6637-6640. 79. Sheng, Z.-H., et al., Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. Journal of Materials Chemistry, 2012. 22(2): p. 390-395. 80. Ryu, S., et al., Raman spectroscopy of lithographically patterned graphene nanoribbons. arXiv preprint arXiv:1201.4298, 2012. 81. Mei, T., et al., One-pot synthesis of carbon nanoribbons and their enhanced lithium storage performance. Journal of Materials Chemistry A, 2014. 2(30): p. 11974-11979. 82. Wu, T., et al., Surface plasmon resonance-induced visible light photocatalytic reduction of graphene oxide: using Ag nanoparticles as a plasmonic photocatalyst. Nanoscale, 2011. 3(5): p. 2142-2144. 83. Liang, A., et al., The surface-plasmon-resonance effect of nanogold/silver and its analytical applications. TrAC Trends in Analytical Chemistry, 2012. 37: p. 32-47. 84. Ameer, F.S., C.U. Pittman Jr, and D. Zhang, Quantification of resonance Raman enhancement factors for rhodamine 6G (R6G) in water and on gold and silver nanoparticles: Implications for single-molecule R6G SERS. The Journal of Physical Chemistry C, 2013. 117(51): p. 27096-27104. 85. Roguska, A., et al., Surface-enhanced Raman scattering (SERS) activity of Ag, Au and Cu nanoclusters on TiO 2-nanotubes/Ti substrate. Applied Surface Science, 2011. 257(19): p. 8182-8189. 86. Jensen, L. and G.C. Schatz, Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory. The Journal of Physical Chemistry A, 2006. 110(18): p. 5973-5977. 87. Ling, X., et al., Can graphene be used as a substrate for Raman enhancement? Nano letters, 2009. 10(2): p. 553-561. 88. Huh, S., et al., UV/Ozone-Oxidized Large-Scale Graphene Platform with Large Chemical Enhancement in Surface-Enhanced Raman Scattering. ACS Nano, 2011. 5(12): p. 9799-9806. 89. Yin, Y., et al., Significantly Increased Raman Enhancement on MoX2 (X= S, Se) Monolayers upon Phase Transition. Advanced Functional Materials, 2017. 27(16). 90. Barman, B.K. and K.K. Nanda, Hexamethylenetetramine mediated simultaneous nitrogen doping and reduction of graphene oxide for a metal-free SERS substrate. RSC Advances, 2014. 4(83): p. 44146-44150. 91. Sivashanmugan, K., et al., Ag nanoclusters on ZnO nanodome array as hybrid SERS-active substrate for trace detection of malachite green. Sensors and Actuators B: Chemical, 2015. 207: p. 430-436. 92. Ding, G., et al., Graphene oxide-silver nanocomposite as SERS substrate for dye detection: effects of silver loading amount and composite dosage. Applied Surface Science, 2015. 345: p. 310-318. 93. Hao, Q., et al., Tuning surface-enhanced Raman scattering from graphene substrates using the electric field effect and chemical doping. Applied physics letters, 2013. 102(1): p. 011102. 94. Huang, S., et al., Molecular selectivity of graphene-enhanced Raman scattering. Nano letters, 2015. 15(5): p. 2892-2901. 95. Li, W.-H., X.-Y. Li, and N.-T. Yu, Surface-enhanced resonance hyper-Raman scattering and surface-enhanced resonance Raman scattering of dyes adsorbed on silver electrode and silver colloid: a comparison study. Chemical physics letters, 1999. 312(1): p. 28-36. 96. Zhang, G., et al., Contribution of oligomer/carbon dots hybrid semiconductor nanoribbon to surface-enhanced Raman scattering property. Applied Surface Science, 2016. 364: p. 660-669. 97. Fan, W., et al., Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing. Nanoscale, 2014. 6(9): p. 4843-4851. 98. Zhou, Y., et al., Graphene–silver nanohybrids for ultrasensitive surface enhanced Raman spectroscopy: size dependence of silver nanoparticles. Journal of Materials Chemistry C, 2014. 2(33): p. 6850-6858. 99. Li, Y., et al., A facile fabrication of large-scale reduced graphene oxide–silver nanoparticle hybrid film as a highly active surface-enhanced Raman scattering substrate. Journal of Materials Chemistry C, 2015. 3(16): p. 4126-4133. 100. Guo, J., et al., Graphene oxide-Ag nanoparticles-pyramidal silicon hybrid system for homogeneous, long-term stable and sensitive SERS activity. Applied Surface Science, 2017. 396: p. 1130-1137. 101. Zhang, C.-y., et al., Graphene oxide-wrapped flower-like sliver particles for surface-enhanced Raman spectroscopy and their applications in polychlorinated biphenyls detection. Applied Surface Science, 2017. 400: p. 49-56. 102. Boca-Farcau, S., et al., Folic acid-conjugated, SERS-labeled silver nanotriangles for multimodal detection and targeted photothermal treatment on human ovarian cancer cells. Molecular pharmaceutics, 2013. 11(2): p. 391-399. 103. Liu, Z., et al., Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging. Physical Chemistry Chemical Physics, 2013. 15(8): p. 2961-2966. 104. Castillo, J.J., et al., Silver‐capped silicon nanopillar platforms for adsorption studies of folic acid using surface enhanced Raman spectroscopy and density functional theory. Journal of Raman Spectroscopy, 2015. 46(11): p. 1087-1094. 105. Wu, X., et al., SERS encoded nanoparticle heterodimers for the ultrasensitive detection of folic acid. Biosensors and Bioelectronics, 2016. 75: p. 55-58. 106. Yang, J., et al., A sandwich substrate for ultrasensitive and label-free SERS spectroscopic detection of folic acid/methotrexate. Biomedical microdevices, 2014. 16(5): p. 673-679. 107. Stokes, R.J., et al., Surface-enhanced Raman scattering spectroscopy as a sensitive and selective technique for the detection of folic acid in water and human serum. Applied spectroscopy, 2008. 62(4): p. 371-376. 108. Castillo, J.J., et al., Adsorption and vibrational study of folic acid on gold nanopillar structures using surface-enhanced Raman scattering spectroscopy. Nanomaterials and Nanotechnology, 2015. 5: p. 29. 109. Sun, Z.J., Z.W. Jiang, and Y.F. Li, Poly (dopamine) assisted in situ fabrication of silver nanoparticles/metal–organic framework hybrids as SERS substrates for folic acid detection. RSC Advances, 2016. 6(83): p. 79805-79810. 110. Ahmad, R., et al., Water-soluble plasmonic nanosensors with synthetic receptors for label-free detection of folic acid. Chemical Communications, 2015. 51(47): p. 9678-9681.
|