|
參考文獻 1.Carmichael, R.S., Physical properties of rocks and minerals. 1989: CRC press Boca Raton. 2.Vignarooban, K., et al., Current trends and future challenges of electrolytes for sodium-ion batteries. International Journal of Hydrogen Energy, 2016. 41(4): p. 2829-2846. 3.Lin, Z. and C. Liang, Lithium–sulfur batteries: from liquid to solid cells. J. Mater. Chem. A, 2015. 3(3): p. 936-958. 4.Wei, T., et al., An All-Ceramic Solid-State Rechargeable Na+-Battery Operated at Intermediate Temperatures. Advanced Functional Materials, 2014. 24(34): p. 5380-5384. 5.Ribes, M., B. Barrau, and J.L. Souquet, Sulfide glasses: Glass forming region, structure and ionic conduction of glasses in Na2S-XS2 (X=Si; Ge), Na2S-P2S5 and Li2S-GeS2 systems. Journal of Non-Crystalline Solids, 1980. 38: p. 271-276. 6.Ong, S.P., et al., Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12(M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors. Energy Environ. Sci., 2013. 6(1): p. 148-156. 7.Richards, W.D., et al., Design and synthesis of the superionic conductor Na10SnP2S12. Nat Commun, 2016. 7: p. 11009. 8.Yu, C., et al., Na-ion dynamics in tetragonal and cubic Na3PS4, a Na-ion conductor for solid state Na-ion batteries. J. Mater. Chem. A, 2016. 4(39): p. 15095-15105. 9.Zhang, L., et al., Vacancy-Contained Tetragonal Na3SbS4 Superionic Conductor. Adv Sci (Weinh), 2016. 3(10): p. 1600089. 10.Berbano, S.S., et al., Formation and structure of Na2S+P2S5 amorphous materials prepared by melt-quenching and mechanical milling. Journal of Non-Crystalline Solids, 2012. 358(1): p. 93-98. 11.Teragawa, S., et al., Liquid-phase synthesis of a Li3PS4 solid electrolyte using N-methylformamide for all-solid-state lithium batteries. Journal of Materials Chemistry A, 2014. 2(14): p. 5095. 12.Yubuchi, S., A. Hayashi, and M. Tatsumisago, Sodium-ion Conducting Na3PS4 Electrolyte Synthesized via a Liquid-phase Process Using N-Methylformamide. Chemistry Letters, 2015. 44(7): p. 884-886. 13.Richards, W.D., et al., Design of Li1+2xZn1−xPS4, a new lithium ion conductor. Energy Environ. Sci., 2016. 9(10): p. 3272-3278. 14.Mizuno, F., et al., New, Highly Ion-Conductive Crystals Precipitated from Li2S-P2S5 Glasses. Advanced Materials, 2005. 17(7): p. 918-921. 15.Mizuno, F., et al., High lithium ion conducting glass-ceramics in the system Li2S–P2S5. Solid State Ionics, 2006. 177(26-32): p. 2721-2725. 16.Hayashi, A., et al., Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat Commun, 2012. 3: p. 856. 17.Seino, Y., et al., A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci., 2014. 7(2): p. 627-631. 18.Cao, C., et al., Recent advances in inorganic solid electrolytes for lithium batteries. Frontiers in Energy Research, 2014. 2: p. 25. 19.Tatsumisago, M. and A. Hayashi, Sulfide Glass-Ceramic Electrolytes for All-Solid-State Lithium and Sodium Batteries. International Journal of Applied Glass Science, 2014. 5(3): p. 226-235. 20.Wang, H., et al., An Air-Stable Na3SbS4 Superionic Conductor Prepared by a Rapid and Economic Synthetic Procedure. Angew Chem Int Ed Engl, 2016. 55(30): p. 8551-5. 21.Banerjee, A., et al., Na3SbS4 : A Solution Processable Sodium Superionic Conductor for All-Solid-State Sodium-Ion Batteries. Angew Chem Int Ed Engl, 2016. 55(33): p. 9634-8. 22.Chu, I.H., et al., Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor. Sci Rep, 2016. 6: p. 33733. 23.Kandagal, V.S., M.D. Bharadwaj, and U.V. Waghmare, Theoretical prediction of a highly conducting solid electrolyte for sodium batteries: Na10GeP2S12. J. Mater. Chem. A, 2015. 3(24): p. 12992-12999. 24.Jha, P.K., O.P. Pandey, and K. Singh, Structural and thermal properties of Na2S–P2S5 glass and glass ceramics. Journal of Non-Crystalline Solids, 2013. 379: p. 89-94. 25.Hayashi, A., et al., Formation of superionic crystals from mechanically milled Li2S–P2S5 glasses. Electrochemistry Communications, 2003. 5(2): p. 111-114. 26.Teragawa, S., et al., Preparation of Li2S–P2S5 solid electrolyte from N-methylformamide solution and application for all-solid-state lithium battery. Journal of Power Sources, 2014. 248: p. 939-942. 27.Kitaura, H., et al., Fabrication of electrode–electrolyte interfaces in all-solid-state rechargeable lithium batteries by using a supercooled liquid state of the glassy electrolytes. J. Mater. Chem., 2011. 21(1): p. 118-124. 28.Kanno, R. and M. Murayama, Lithium Ionic Conductor Thio-LISICONThe Li2S-GeS2-P2S5 System. Journal of The Electrochemical Society, 2001. 148: p. A742-A746. 29.Larink, D., H. Eckert, and S.W. Martin, Structure and Ionic Conductivity in the Mixed-Network Former Chalcogenide Glass System [Na2S]2/3[(B2S3)x(P2S5)1–x]1/3. The Journal of Physical Chemistry C, 2012. 116(43): p. 22698-22710. 30.Yamauchi, A., et al., Preparation and ionic conductivities of (100 − x)(0.75Li2S·0.25P2S5)·xLiBH4 glass electrolytes. Journal of Power Sources, 2013. 244: p. 707-710. 31.Kennedy, J.H. and Z. Zhang, Preparation-and-Electrochemical-Properties-of-the-SiS2-P2S5-Li2S-Glass-Coformer-System. J. Electrochem. Soc., 1989. 136: p. 2441.
|