|
1. Morris MJ, Scher HI. Clinical approaches to osseous metastases in prostate cancer. Oncologist 2003;8:161–73. 2. Smith Jr JA, Soloway MS, Young MJ. Complications of advanced prostate cancer. Urology 1999;54:8–14. 3. Pecher C. Biological investigation with radioactive calcium and strontium: preliminary report on the use of radioactive strontium in the treatment of metastatic bone cancer. UnivCalifPublPharmacol 1942;2:117–49. 4. Kolesnikov-Gauthier H, Carpentier P, Depreux P, Vennin P, Caty A, Sulman C. Evaluation of toxicity and efficacy of 186Re-hydroxyethylidene diphosphonate in patients with painful bone metastases of prostate or breast cancer. J Nucl Med 2000;41:1689–94. 5. Sciuto R, Festa A, Pasqualoni R, Semprebene A, Rea S, Bergomi S, et al. Metastatic bone pain palliation with 89-Sr and 186-Re-HEDP in breast cancer patients. Breast Cancer Res Treat 2001;66:101–9. 6. Liepe K, Kropp J, Runge R, Kotzerke J. Therapeutic effi- ciency of rhenium-188-HEDP in human prostate cancer skeletal metastases. Br J Cancer 2003;89:625–9. 7. Oosterhof GO, Roberts JT, de Reijke TM, Engelholm SA, Horenblas S, von der Maase H, et al. Strontium(89) chloride versus palliative local field radiotherapy in patients with hormonal escaped prostate cancer: a phase III study of the European Organisation for Research and Treatment of Cancer Genitourinary Group. EurUrol 2003;44:519–26. 8. Dafermou A, Colamussi P, Giganti M, Cittanti C, Bestagno M, Piffanelli A. A multicentre observational study of radionuclide therapy in patients with painful bone metastases of prostate cancer. Eur J Nucl Med 2001;28:788–98. 9. Kraeber-Bodere F, Campion L, Rousseau C, Bourdin S, Chatal JF, Resche I. Treatment of bone metastases of prostate cancer with strontium-89 chloride: efficacy in relation to the degree of bone involvement. Eur J Nucl Med 2000;27:1487–93. 10. Windsor PM. Predictors of response to strontium-89 (Metastron) in skeletal metastases from prostate cancer: report of a single centre’s 10-year experience. ClinOncol (R CollRadiol) 2001;13:219–27. eau-ebu update series 5 (2007) 113–125 121. 11. Liepe K, Runge R, Kotzerke J. The benefit of bone-seeking radiopharmaceuticals in the treatment of metastatic bone pain. J Cancer Res ClinOncol 2005;131:60–6. 12. Han SH, de Klerk JM, Tan S, het Schip AD, Derksen BH, van Dijk A, et al. The PLACORHEN study: a double-blind, placebo-controlled, randomized radionuclide study with (186)Re-etidronate in hormone-resistant prostate cancer patients with painful bone metastases. Placebo Controlled Rhenium Study. J Nucl Med 2002;43:1150–6. 13. Liepe K, Franke WG, Kropp J, Koch R, Runge R, Hliscs R. Comparison of rhenium-188, rhenium-186-HEDP and strontium-89 in palliation of painful bone metastases. Nuklearmedizin 2000;39:146–51. 14. Falkmer, U., Järhult, J., Wersäll, P., & Cavallin-Ståhl, E. A systematic overview of radiation therapy effects in skeletal metastases. ActaOncologica2003;42(5-6), 620-633. 15. Xiao, H., Li, P., Jia, F., & Zhang, L. General nonaqueous sol− gel synthesis of nanostructured Sm2O3, Gd2O3, Dy2O3, and Gd2O3: Eu3+ phosphor. The Journal of Physical Chemistry C 2009;113(50), 21034-21041. 16. Muneer, I., Farrukh, M. A., Javaid, S., Shahid, M., &Khaleeq-ur-Rahman, M. Synthesis of Gd2O3/Sm2O3nanocomposite via sonication and hydrothermal methods and its optical properties. Superlattices and Microstructures 2015;77, 256-266. 17. Ghosh, P., Kundu, S., Kar, A., Ramanujachary, K. V., Lofland, S., &Patra, A. Synthesis and characterization of different shaped Sm2O3nanocrystals. Journal of Physics D: Applied Physics 2010;43(40), 405401. 18. Mohammadinasab, R., Tabatabaee, M., Aghaie, H., &SeyedSadjadi, M. A. A simple method for synthesis of nanocrystalline Sm2O3 powder by thermal decomposition of samarium nitrate. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 2015;45(3), 451-454. 19. Liu, T., Zhang, Y., Shao, H., & Li, X. Synthesis and characteristics of Sm2O3 and Nd2O3 nanoparticles. Langmuir2003;19(18), 7569-7572. 20. Ascencio, J. A., Rincon, A. C., &Canizal, G. Synthesis and theoretical analysis of samarium nanoparticles: perspectives in nuclear medicine. The Journal of Physical Chemistry B 2005;109(18), 8806-8812.. 21. Hashikin, N. A. A., Yeong, C. H., Abdullah, B. J. J., Ng, K. H., Chung, L. Y., Dahalan, R., & Perkins, A. C. Neutron Activated Samarium-153 Microparticles for TransarterialRadioembolization of Liver Tumour with Post-Procedure Imaging Capabilities. PloS one 2015;10(9), e0138106. 22. Nejad, S. J., &Golzary, A. Experimental design for the optimization of hydrothermal synthesis of samarium oxide (Sm2O3) nanoparticles under supercritical water condition. International Journal of Chemical Engineering and Applications 2011;2(4), 243. 23. Kang, J. G., Min, B. K., &Sohn, Y. Synthesis and characterization of Sm(OH) and SmO nanoroll sticks. Journal of materials science 2015;50(4). 24. Nguyen, T. D., Mrabet, D., & Do, T. O. Controlled self-assembly of Sm2O3 nanoparticles into nanorods: simple and large scale synthesis using bulk Sm2O3 powders. The Journal of Physical Chemistry C 2008;112(39), 15226-15235. 25. Matijević, E., & Hsu, W. P. Preparation and properties of monodispersed colloidal particles of lanthanide compounds: I. Gadolinium, europium, terbium, samarium, and cerium (III). Journal of Colloid and Interface Science 1987;118(2), 506-523. 26. Gaspar, R. D. L., Mazali, I. O., &Sigoli, F. A. Particle size tailoring and luminescence of europium (III)-doped gadolinium oxide obtained by the modified homogeneous precipitation method: Dielectric constant and counter anion effects. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010;367(1), 155-160. 27. Kulkarni, S. S., &Shirsat, M. D. Optical and structural properties of zinc oxide nanoparticles. 2015 28. Bridot, J. L., Faure, A. C., Laurent, S., Rivière, C., Billotey, C., Hiba, B., ...& Muller, R. Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. Journal of the American Chemical Society 2007;129(16), 5076-5084. 29. PetoralJr, R. M., Soderlind, F., Klasson, A., Suska, A., Fortin, M. A., Abrikossova, N., ... &Uvdal, K. Synthesis and characterization of Tb3+-doped Gd2O3 nanocrystals: a bifunctional material with combined fluorescent labeling and MRI contrast agent properties. The Journal of Physical Chemistry C 2009;113(17), 6913-6920. 30. Gao, J., Zhao, Y., Yang, W., Tian, J., Guan, F., Ma, Y., ...& Wang, Y. Preparation of samarium oxide nanoparticles and its catalytic activity on the esterification. Materials chemistry and physics2003;77(1), 65-69. 31. Cheng, M. Y., Hwang, D. H., Sheu, H. S., & Hwang, B. J. Formation of Ce0.8 Sm0.2O1.9 nanoparticles by urea-based low-temperature hydrothermal process. Journal of Power Sources 2008;175(1), 137-144. 32. Kobayashi, Y., Katakami, H., Mine, E., Nagao, D., Konno, M., & Liz-Marzán, L. M. Silica coating of silver nanoparticles using a modified Stöber method. Journal of colloid and interface science 2005;283(2), 392-396. 33. Mine, E., Yamada, A., Kobayashi, Y., Konno, M., & Liz-Marzán, L. M. Direct coating of gold nanoparticles with silica by a seeded polymerization technique. Journal of colloid and interface science 2003;264(2), 385-390. 34. Alias, S. S., Ismail, A. B., &Mohamad, A. A. Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation. Journal of Alloys and Compounds 2010;499(2), 231-237. 35. Bazzi, R., Flores, M. A., Louis, C., Lebbou, K., Zhang, W., Dujardin, C., ...&Perriat, P. Synthesis and properties of europium-based phosphors on the nanometer scale: Eu2O3, Gd2O3: Eu, and Y2O3: Eu. Journal of colloid and interface science 2004;273(1), 191-197. 36. Yang, J., Li, C., Quan, Z., Kong, D., Zhang, X., Yang, P., & Lin, J. One-step aqueous solvothermal synthesis of In2O3 nanocrystals. Crystal Growth and Design 2007;8(2), 695-699. 37. Caruntu, D., Remond, Y., Chou, N. H., Jun, M. J., Caruntu, G., He, J., ... & Kolesnichenko, V. Reactivity of 3d transition metal cations in diethylene glycol solutions. Synthesis of transition metal ferrites with the structure of discrete nanoparticles complexed with long-chain carboxylate anions. Inorganic chemistry 2002;41(23), 6137-6146. 38. Mutelet, B., Perriat, P., Ledoux, G., Amans, D., Lux, F., Tillement, O., ... & Roux, S. Suppression of luminescence quenching at the nanometer scale in Gd2O3 doped with Eu3+ or Tb3+: Systematic comparison between nanometric and macroscopic samples of life-time, quantum yield, radiative and non-radiative decay rates. Journal of Applied Physics 2011;110(9), 094317. 39. Flores-Gonzalez, M. A., Ledoux, G., Roux, S., Lebbou, K., Perriat, P., &Tillement, O. Preparing nanometer scaled Tb-doped Y2O3 luminescent powders by the polyol method. Journal of Solid State Chemistry 2005;178(4), 989-997. 40. Bazzi, R., Brenier, A., Perriat, P., &Tillement, O. Optical properties of neodymium oxides at the nanometer scale. Journal of luminescence 2005;113(1), 161-167. 41. Bazzi, R., Flores-Gonzalez, M. A., Louis, C., Lebbou, K., Dujardin, C., Brenier, A., ...&Perriat, P. Synthesis and luminescent properties of sub-5-nm lanthanide oxides nanoparticles. Journal of Luminescence 2003;102, 445-450. 42. Lebbou, K., Perriat, P., &Tillement, O. Recent progress on elaboration of undoped and doped Y2O3, Gd2O3 rare-earth nano-oxide. Journal of nanoscience and nanotechnology 2005;5(9), 1448-1454. 43. Azizian, G., Riyahi-Alam, N., Haghgoo, S., Moghimi, H. R., Zohdiaghdam, R., Rafiei, B., &Gorji, E. Synthesis route and three different core-shell impacts on magnetic characterization of gadolinium oxide-based nanoparticles as new contrast agents for molecular magnetic resonance imaging. Nanoscale research letters 2012;7(1), 549.
|