|
1. Dembinska, M.E., Allen, M.M., Cyanophycin Granule Size Variation in Aphanocapsa. Microbiology, 1988. 134(2): p.295-298. 2. Allen, M.M., Hutchison, F., Weathers, P.J., Cyanophycin Granule Polypeptide Formation and Degradation in the Cyanobacterium Aphanocapsa 6308. Journal of Bacteriology, 1980. 141 (2): p. 689-673. 3. Mackerras, A.H., De Chazal, N.M., Smit, G.D., Transient accumulations of cyanophycin in Anabaena cyZidkica and Syitechocystis 6308. Journal of General Microbiology, 1990. 136: p.2057-2065. 4. Berg, H., Ziegler, K., Piotukh, K., Baier, K., Lockau, W., Volkmer-Engert, R., Biosynthesis of the cyanobacterial reserve polymer multi-L-arginyl-poly-L-aspartic acid (cyanophycin): mechanism of the cyanophycin synthetase reaction studied with synthetic primers. European Journal of Biochemistry, 2000. 267(17): p. 5561-5570. 5. Ziegler, K., Diener, A., Herpin, C., Richter, R., Deutzmann, R., Lockau, W., Molecular characterization of cyanophycin synthetase, the enzyme catalyzing the biosynthesis of the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartate (cyanophycin). European Journal of Biochemistry, 1998. 254: p.154-159. 6. Aboulmagd, E., Oppermann-Sanio, F.B., Steinbüchel, A., Molecular characterization of the cyanophycin synthetase from Synechocystis sp. strain PCC6308. Archives of Microbiology, 2000. 174: p.297-306. 7. Simon, R.D., Weathers, P., Determination of the structure of the novel polypeptide containing aspartic acid and arginine which is found in Cyanobacteria. Biochimica et Biophysica Acta, 1976. 420: p.165-176. 8. Mooibroek, H., Oosterhuis, N., Giuseppin, M., Toonen, M., Franssen, H., Scott, E., Sanders, J., Steinbüchel, A., Assessment of technological options and economical feasibility for cyanophycin biopolymer and high-value amino acid production. Appl Microbiol Biotechnol, 2007. 77: p.257-267. 9. Wiefel, L., Steinbüchel, A., Solubility Behavior of Cyanophycin Depending on Lysine Content. Applied and Environmental Microbiology, 2014. 80 (3): p.1091-1096. 10. Oppermann-Sanio, F.B., Steinbüchel, A., Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production. Naturwissenschaften, 2002. 89: p.11-22. 11.Khlystov, N.A., Chan, W.-Y., Kunjapur, A.M., Shi, W.-C., Prather, K.L.J., Olsen, B.D., Material properties of the cyanobacterial reserve polymer multi-l-arginyl-poly-l-aspartate (cyanophycin). Polymer, 2017. 109: p.238-245. 12. Sallam, A., Steinbüchel, A., Dipeptides in nutrition and therapy: cyanophycin-derived dipeptides as natural alternatives and their biotechnological production. Appl Microbiol Biotechnol, 2010. 87: p. 815-828. 13. Schmidt, K., Schmidtke, J., Mast, Y., Waldvogel, E., Wohlleben, W., Klemke, F., Lockau, W., Hausmann, T., Hühns, M., Broer, I., Comparative statistical component analysis of transgenic, cyanophycin-producing potatoes in greenhouse and field trials. Transgenic Research, 2017. 152 (26): p.1-11. 14. Roberts, M.J., Bentley, M.D., Harris, J.M., Chemistry for peptide and protein PEGylation. Advanced Drug Delivery Reviews, 2002. 54: p.459-476. 15. Casettari, L., Vllasaliu, D., Mantovani, G., Howdle, S.M., Stolnik, S., Illum, L., Effect of PEGylation on the Toxicity and Permeability Enhancement of Chitosan. Biomacromolecules, 2010. 11: p.2854-2865. 16. Chen, J., Spear, S.K., Huddleston, J.G., Rogers, R.D., Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chemistry, 2005. 7: p.64-82. 17. Abuchowski, A., Es, T.V., Palczuk, N.C., Davis, F.F., Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. The Journal of Biological Chemistry, 1977. 250 (11): p.3578-3581. 18. Veronese, F.M., Peptide and protein PEGylation: a review of problems and solutions. Biomaterials, 2001. 22: p.405-417. 19. Dong, J.-F., Jin, Y., Xie, M.-Q., Ye, Y.-J., Qin, D.-D., Lou, K.-Y., Chen, Y.-Z., Gao, F., Preparation and characterization of mPEG grafted chitosan micelles as 5-fluorouracil carriers for effective anti-tumor activity. Chinese Chemical Letters, 2014. 25: p.1435-1440. 20. Gaberc-Porekar, V., Zore, I., Podobnik, B., Menart, V., Obstacles and pitfalls in the PEGylation of therapeutic proteins. Current Opinion in Drug Discovery & Development, 2008. 11 (2): p.242-250. 21. Harris, J. M., Chess, R. B., Effect of pegylation on pharmaceu-ticals. Nature reviews. Drug discovery, 2003. 2: p.214-221. 22. Cristina Monfardini, C., Schiavon, O., Caliceti, P., Morpurgo, M., J. Harris, M., Francesco, Veronese, F.M., A Branched Monomethoxypoly (ethy1ene glycol) for Protein Modification. Bioconjugate Chem., 1995. 6: p.62-69. 23. Kozlowski, A., Charles, S.A., Harris, J.M., Development of Pegylated Interferons for the Treatment of Chronic Hepatitis C. BioDrugs, 2001. 15: p.419-429. 24. Kushida, A., Yamato, M., Konno, C., Kikuchi, A., Sakurai, Y., Okano, T., Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature-responsive culture surfaces. Biomed. Mater. Res, 1999. 45: p.355-362. 25. Seuring, J., Agarwal, S., Non-Ionic Homo- and Copolymers with H-Donor and H-Acceptor Units with an UCST in Water. Macromolecular Chemistry and Physics, 2010. 211: p. 2109-2117. 26. Glatzel, S., Laschewsky, A., Lutz, J.F., Well-Defined Uncharged Polymers with a Sharp UCST in Water and in Physiological Milieu. Macromolecules, 2011. 44: p. 413-415. 27. Quiroz, F.G., Chilkoti, A., Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers. Nature Materials, 2015. 14: p.1164-1171. 28. Clark, E.A., Lipson, J.E.G., LCST and UCST behavior in polymer solutions and blends. Polymer, 2012. 53: p. 536-545. 29. Kim, B., Hong, D., Chang, W.V., LCST and UCST double-phase transitions of poly(N-isopropylacrylamide-co-2-acrylamidoglycolic acid)/poly(dimethylaminoethyl methacrylate) complex. Colloid and Polymer Science, 2014. 293 (3): p.699-708. 30. Wu, C., Wang, X.-H., Globule-to-Coil Transition of a Single Homopolymer Chain in Solution. Physical Review Letters, 1998. 80: p. 4092-4094. 31. Seuring, J., Bayer, F.M., Huber, K., Agarwal, S., Upper Critical Solution Temperature of Poly(N-acryloyl glycinamide) in Water: A Concealed Property. Macromolecules, 2012. 45: p.374-384. 32. Seuring, J., Agarwal, S., Polymers with Upper Critical Solution Temperature in Aqueous Solution: Unexpected Properties from Known Building Blocks. ACS Macro Letters, 2013. 2: p.597-600. 33. Hatefi, A., Amsden, B., Biodegradable injectable in situ forming drug delivery systems. Journal of Controlled Release, 2002. 80: p. 9-28. 34. Boustta, M., Colombo, P.E., Sébastien Lenglet, Sylvain Poujol, Michel Vert. Versatile UCST-based thermoresponsive hydrogels for loco-regional sustained drug delivery. Journal of Controlled Release, 2014. 174: p.1-6. 35. Zhou, Y.-M., Ishikawa, A., Okahashi, R., Uchida, K., Nemoto, Y., Nakayama, M., Nakayama, Y., Deposition transfection technology using a DNA complex with a thermoresponsive cationic star polymer. Journal of Controlled Release, 2007. 123: p. 239-246. 36. Kumashiro, Y., Yamato, M., Okano, T., Cell Attachment–Detachment Control on Temperature-Responsive. Annals of Biomedical Engineering, 2010. 38: p.1977-1988. 37. Nitschke, M., Gramm, S., Gotze, T., Valtink, M., Drichel, J., Voit, B., Engelmann, K., Werner, C., Thermo-responsive poly(NiPAAm-co-DEGMA) substrates for gentle harvest of human corneal endothelial cell sheets. Journal of Biomedical Materials Research Part A, 2007. 80A: p.1003-1010. 38. Gandhi, A., Suma, A.P., Sen, O., Sen, K.K., Studies on thermoresponsive polymers Phase behaviour, drug delivery and biomedical applications. Asian Journal of Pharmaceutical Sciences, 2015: p.99-107. 39. You, J.-O., Almeda, D., Ye, G.J., Auguste, D.T., Bioresponsive matrices in drug delivery. Journal of Biological Engineering, 2014. 4 (5): p.1-12. 40. Gil E.S., Hudson S.M., Stimuli-reponsive polymers and their bioconjugates. Progress in Polymer Science, 2004. 29 (12): p.1173-1222. 41. Cabane, E., Zhang, X., Langowska, K., Palivan, C.G., Meier, W., Stimuli-Responsive Polymers and Their Applications in Nanomedicine. Biointerphases, 2017. 7 (9): p.1-27. 42. Schmaljohann, D.. Thermo- and pH-responsive polymers in drug delivery. Advanced Drug Delivery Reviews, 2006. 58: p.1655-1670. 43. Lavignac, N., Lazenby, M., Foka, P., Malgesini, B., Verpilio, I., Ferruti, P., Duncan, R., Synthesis and endosomolytic properties of poly(amidoamine) block copolymers. Macromol. Biosci, 2004. 4: p. 922-929. 44. Khayat, Z., Griffiths, P.C., Grillo, I., Heenan, R.K., King, S.M., Duncan, R., Characterising the size and shape of polyamidoamines in solution as a function of pH using neutron scattering and pulsed-gradient spin-echo NMR. International Journal of Pharmaceutics, 2006. 317 (2): p. 175-186. 45. Maji, T., Banerjee, S., Biswas, Y., Mandal, T.K., Dual-Stimuli-Responsivel-Serine-Based Zwitterionic UCST-Type Polymer with Tunable Thermosensitivity. Macromolecules, 2015. 48 (14): p. 4957-4966. 46. Mukherjee, A., Lavery, R., Bagchi, B., Hynes, J.T., On the Molecular Mechanism of Drug Intercalation into DNA: A Simulation Study of the Intercalation Pathway, Free Energy, and DNA Structural Changes. Journal of the American Chemical Society, 2008. 130: p.9747-9755. 47. Feng, C., Rui, M., Shen, H., Xin, Y., Zhang, J., Li, J., Yue, L., Lai, W.-L., Xu, X., Tumor-specific delivery of doxorubicin through conjugation of pH-responsive peptide for overcoming drug resistance in cancer. International Journal of Pharmaceutics, 2017. 528: p.322-333. 48. Holehouse, A.S., Pappu, R.V., Protein polymers: Encoding phase transitions. Nature Materials, 2015. 14 (11): p.1083-1084. 49. Miller-Chou, B.A., Koenig, J.L., A review of polymer dissolution. Prog. Polym. Sci, 2003. 28: p.1223-1270.
|