跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/10 15:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪壽邦
研究生(外文):Shou-Bang Hong
論文名稱:水相合成鎵摻雜之CuInSe2量子點及其量子點敏化太陽能電池應用
論文名稱(外文):Aqueous synthesis of Ga-doped CuInSe2 quantum dots and its application in quantum dots sensitized solar cell
指導教授:張家耀張家耀引用關係
指導教授(外文):Jia-Yaw Chang
口試委員:何郡軒李昇隆
口試日期:2017-07-20
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:82
中文關鍵詞:銅銦硒三元量子點量子點敏化太陽能電池水相合成摻雜
外文關鍵詞:CISe QDsQDSSCsAqueous synthesisDoping
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用微波輔助合成法,將低毒性金屬前驅物與雙功能分子於水相系統中反應以合成三元半導體CuInSe2量子點,並將其應用於量子點敏化太陽能電池以製備出高效率的電池元件。此種合成技術相較於傳統有機製程,具有快速且簡易的合成、環境友善性佳等優勢,使其具有發展的潛力。
研究內容分成兩部分,第一部分為藉由調控前驅物銅銦莫耳數比,改善量子點的吸光範圍及填補其本身的內部缺陷,在銅銦比例1:3時有最佳光電轉換效率8.24%。此外,由元件的電化學阻抗分析與光強度調製光電流/光電壓分析儀分析,探討電子內部的傳遞動力學及界面阻抗之影響;第二部分為藉由鎵元素摻雜於不同銅銦比例之量子點,以提升光電轉換效率,其中在銅銦比例1:3時,效率可由原本的8.24%進一步的提升至8.68%,根據我們的了解,這是目前在水相製程中最佳的效率。
In this study, we demonstrated the synthesis of CuInSe2 (CISe) quantum dots (QDs) by microwave-assisted method in aqueous phase for quantum dots sensitized solar cells (QDSSCs). The CISe QDs were synthesized by the rapid reaction of low-toxic metal precursors and short-chain bi-functional molecules in the absence of organic solvents. Compared to traditional hot-injection and heating-up methods by using of organic solvents, aqueous synthesis has advantages of rapid, simple, and environmentally friendly.
This research was divided into two parts. The first part was by adjusting the copper to indium (Cu/In) ratio of CISe QDs to improve the absorption range and modify the internal defects, which effectively enhanced the photoelectric conversion efficiency (PCE) up to 8.24%. The electrochemical impedance spectroscopy (EIS) analysis and intensity modulated photocurrent / photovoltage spectroscopy (IMPS/IMVS) showed the internal electron transfer and impedance of the interface. The second part was by doping gallium (Ga) into different Cu/In ratio of CISe QDs and further boosted the photoelectric conversion efficiency up to 8.68%. Based on our knowledge, this is the best efficiency of QDSSCs in direct aqueous synthesis.
摘要 I
Abstract II
致 謝 III
研究動機 IV
總目錄 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 太陽能電池的發展 2
1.2.1 矽晶太陽能電池 3
1.2.2 薄膜太陽能電池 4
1.2.3 染料敏化太陽能電池 4
第二章 文獻回顧 6
2.1 量子點材料特性 6
2.1.1 量子侷限效應 7
2.1.2 多重激子產生效應 9
2.2 量子點敏化太陽能電池工作原理 10
2.3 量子點敏化太陽能電池元件介紹 11
2.3.1 透明導電玻璃 11
2.3.2 氧化物半導體 12
2.3.3 光敏化劑 14
2.3.4 電解液 16
2.3.5 背電極 18
2.4 量子點敏化劑製備方法 19
2.4.1 化學浴沉積法(CBD) 20
2.4.2 連續離子吸附與反應(SILAR) 21
2.4.3 預先合成法(pre-synthesized method) 24
第三章 實驗藥品與方法 33
3.1 實驗藥品 33
3.2 實驗儀器 35
3.3 實驗流程簡介 36
3.4 導電玻璃清洗 37
3.5 光電極薄膜製備 37
3.6 量子點敏化劑之製備 38
3.6.1 前驅物母液配製 38
3.6.2 CISe量子點合成 39
3.6.3 Ga摻雜CISe量子點合成 39
3.7 共吸附劑配製 40
3.8 ZnSexS1-x鈍化層 40
3.8.1 ZnSexS1-x前驅物溶液配製 40
3.8.2 ZnSexS1-x鈍化層沉積 40
3.9 電解液之配製 41
3.10 CuS背電極製備 41
3.11 電池元件封裝 41
第四章 實驗結果與討論 43
4.1 不同銅銦莫耳數比CISe材料及元件分析 44
4.1.1 元素組成分析 44
4.1.2 結構型態分析 45
4.1.3 光學性質分析 48
4.1.4 不同銅銦莫耳數比之元件分析 50
4.2 鎵(Ga)摻雜不同銅銦莫耳數比CISe材料及元件分析 60
4.2.1 結構型態分析 60
4.2.2 光學性質分析 63
4.2.3 元素組成分析 63
4.2.4 鎵摻雜於不同銅銦莫耳數比之元件分析 64
第五章 結論與未來展望 72
參考文獻 73
[1] W. Feng, L. Zhao, J. Du, Y. Li and X. Zhong, J. Mater. Chem. A, 2016, 4, 14849-14856
[2] J. Du, Z. Du, J. S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun, X. Zhong and L. J. Wan, J. Am. Chem. Soc., 2016, 138, 4201-4209
[3] M. Booth, A. P. Brown, S. D. Evans and K. Critchley, Chem. Mater., 2012, 24, 2064-2070
[4] E. Witt and J. Kolny-Olesiak, Chem.-Eur. J., 2013, 19, 9746-9753
[5] U.S. Energy Information Administration / International Energy Outlook 2010.
[6] D. M. Chapin, C. Fuller and G. Pearson, J. Appl. Phys., 1954, 25, 676-677
[7] National Renewable Energy Laboratory (NREL). Best Research-Cell Efficiencies. Review; 6 September 2015
[8] E. Centurioni and D. Iencinella, IEEE Electron Device Lett., 2003, 24, 177-179
[9] C. Battaglia, A. Cuevas and S. De Wolf, Energy Environ. Sci., 2016, 9, 1552-1576
[10] W. Shockley and H. J. Queisser, J. Appl. Phys., 1961, 32, 510-519
[11] M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, Prog. Photovoltaics, 2016, 24, 3-11
[12] K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, A. Duda, Progress in Photovoltaics:Research and Applications, 1999, 11, 225-230
[13] J. Britt and C. Ferekides, Appl. Phys. Lett., 1993, 62, 2851-2852
[14] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Nature, 1976, 261, 402-403
[15] B. O'Regan and M. Gratzel, Nature, 1991, 353, 737-740
[16] A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Grätzel, Sci., 2011, 334, 629-634
[17] H. K. Jun, M. A. Careem and A. K. Arof, Renewable and Sustainable Energy Reviews, 2013, 22, 148-167
[18] Y. Wang and N. Herron, J. Phys. Chem., 1991, 95, 525
[19] M. Green, Curr. Opin. Solid State Mater. Sci., 2002, 6, 355-363
[20] X. Lan, S. Masala, E.H. Sargent, Nat. Mater. 2014, 13, 233–240
[21] H. Doh, S. Hwang, and S. Kim, Chemistry of Materials, 2016, 28, 8123-8127
[22] P. Guyot-Sionnest, M. Shim, C. Matranga and M. Hines, Phys. Rev., 1999, 60, R2181
[23] M. Kouhnavard, S. Ikeda, N. A. Ludin, N. B. Ahmad Khairudin, B. V. Ghaffari, M. A. Mat-Teridi, M. A. Ibrahim, S. Sepeai and K. Sopian, Renewable and Sustainable Energy Reviews, 2014, 37, 397-407
[24] A. J. Nozik, Physica E, 2002, 14, 115-120
[25] J. K. Sun, Y. Jiang, X. Zhong, J. S. Hu and L. J. Wan, Nano Energy, 2017, 32, 130-156
[26] P. V. Kamat, Acc. Chem. Res., 2012, 45, 1906-1915
[27] G. Chen, J. Seo, C. Yang and P. N. Prasad, Chem. Soc. Rev., 2013, 42, 8304-8338
[28] A. a. m. i. j. o. p. c. l. P.-C. Sinica, 楊明輝,”透明導電膜材料與成膜技術的新發展”,工業材料,第189期, 2000,pp.161~174
[29] D. Fraser and H. Cook, J. Vac. Sci. Technol., 1977, 14, 147-151
[30] L. Davis, Thin Solid Films, 1993, 236, 1-5
[31] H. Lehmann and R. Widmer, Thin Solid Films, 1975, 27, 359-368
[32] E. Shanthi, A. Banerjee, V. Dutta and K. Chopra, J. Appl. Phys., 1982, 53, 1615-1621
[33] J. Desilvestro, M. Grätzel, L. Kavan, J Moser and J. Augustynski, J. Am. Chem. Soc., 1985, 107, 2988-2990
[34] B. O’Regan and M. Grätzel, Nature, 1991, 353, 737-740
[35] K. Keis, L. Vayssiers, S. E. Linfquist and A. Hagfeldt, Nanostruct. Mater., 1999, 12, 487-490
[36] S. Ferrere, A. Zaban and B. A. Gregg, J. Phys. Chem. B, 1997, 101, 4490-4493
[37] K. Sayama, H. Sugihara and H. Arakawa, Chem. Mater., 1998, 10, 3825-3832
[38] Z. Li, L. B. Yu, Y. B. Liu and S. Q. Sun, Electrochim. Acta, 2015, 153, 200-209
[39] J. Jiao, Z. J. Zhou, W. H. Zhou and S. X. Wu, Mater. Sci. Semicond. Process., 2013, 16, 435-440
[40] Z. Y. Peng, Y. L. Liu, Y. H. Zhao, W. Shu, K. Q. Chen, Q. L. Bao and W. Chen, Electrochim. Acta, 2013, 111, 755-761
[41] Z. Li, L. B. Yu, Y. B. Liu and S. Q. Sun, Electrochim. Acta, 2014, 129, 379-388
[42] C. J. Raj, S. N. Karthick, S. Park, K. V. Hemalatha, S. K. Kim, K. Prabakar and H. J. Kim, J. Power Sources, 2014, 248, 439-446
[43] H. N. Chen, W. P. Li, H. C. Liu and L. Q. Zhu, Electrochem. Commun., 2011, 13, 331-334
[44] Y. Zhao, H. Y. Guo, H. Hua, Y. Xi and C. G. Hu, Electrochim. Acta, 2014, 115, 487-492
[45] W. T. Sun, Y. Yu, H. Y. Pan, X. F. Gao, Q. Chen and L. M. Peng, J. Am. Chem. Soc., 2008, 130, 1124-1125
[46] A. Badawi, N. Al-Hosiny, S. Abdallah, A. Merazga and H. Talaat, Mater. Sci. Semicond. Process., 2014, 26, 162-168
[47] S. J. Li, Z. Chen, T. Li, H. P. Gao, C. C. Wei, W. Li, W. P. Kong and W. F. Zhang, Electrochim. Acta, 2014, 127, 362-368
[48] H. L. Feng, W. Q. Wu, H. S. Rao, Q. Wan, L. B. Li, D. B. Kuang and C. Y. Su, ACS Appl. Mater. Interfaces, 2015, 7, 5199-5205
[49] S. K. Kim, S. Park, M. K. Son and H. J. Kim, Electrochim. Acta, 2015, 151, 531-536
[50] 陳信宏,“染料敏化太陽能電池近期發展”,光連雙月刊,No.84,p.24,2009年11月.
[51] S. J. Li, Z. Chen, T. Li, H. P. Gao, C. C. Wei, W. Li, W. P. Kong and W. F. Zhang, Electrochim. Acta, 2014, 127, 362-368
[52] X. H. Song, M. Q. Wang, T. Y. Xing, J. P. Deng, J. J. Ding, Z. Yang and X. Y. Zhang, J. Power Sources, 2014, 253, 17-26
[53] A. Badawi, N. Al-Hosiny, S. Abdallah, S. Negm and H. Talaat, Sol. Energy, 2013, 88, 137-143
[54] L. Tao, Y. Xiong, H. Liu and W. Z. Shen, Nanoscale, 2014, 6, 931-938
[55] A. Tubtimtae, K.-L. Wu, H.-Y. Tung, M.-W. Lee and G. J. Wang, Electrochem. Commun. 2010, 12, 1158–1160
[56] Z. Pan, K. Zhao, J. Wang, H. Zhang, Y. Feng and X. Zhong, ACS Nano, 2013, 7, 5215–5222
[57] J. Y. Chang, C. H. Li, Y. H. Chang, C. H. Chen and P. N. Li, ACS Appl. Mater. Interfaces, 2016, 8, 18878-18890
[58] J. S. Niezgoda, E. Yap, J. D. Keene, J. R. McBride and S. J. Rosenthal, Nano Lett., 2014, 14, 3262-3269
[59] H. McDaniel, N. Fuke, J.M. Pietryga and V.I. Klimov, J. Phys. Chem. Lett., 2013, 4, 355-361
[60] Z. Yang, C. Y. Chen, C. W. Liu and H. T. Chang, Chem. Commun., 2010, 46, 5485-5487
[61] M. A. Hossain, J. R. Jennings, Z. Y. Koh and Q. Wang, ACS Nano, 2011, 5, 3172-3181
[62] H. J. Lee, J. Bang, J. Park, S. Kim and S. M. Park, Chem. Mater., 2010, 22, 5636-5643
[63] W. J. Zhang, H. Zhang, Y. Y. Feng and X. H. Zhong, ACS Nano, 2012, 6, 11066-11073
[64] J. Wang, I. Mora-Seró, Z. Pan, K. Zhao, H. Zhang, Y. Feng, G. Yang, X. Zhong and J. Bisquert, J. Am. Chem. Soc., 2013, 135, 15913-15922
[65] Y. Dong, J. Choi, H.-K. Jeong and D. H. Son, J. Am. Chem. Soc., 2015, 137, 5549-5554
[66] G. Manna, S. Jana, R. Bose and N. Pradhan, J. Phys. Chem.Lett., 2012, 3, 2528-2534
[67] Q. W. Tang, H. Y. Cai, S. S. Yuan and X. Wang, J. Matter. Chem. A, 2013, 1, 317-323
[68] B. L. He, Q. W. Tang, L. Liang and Q. H. Li, J. Matter. Chem. A, 2014, 2, 3119-3126
[69] Y. L. Lee, and C. H. Chang, J. Power Source, 2008, 185, 584-588
[70] V. Chakrapani, D. Baker and P. V. Kamat, J. Am. Chem. Soc., 2011, 133, 9607-9615
[71] Y. L. Liao, J. Zhang, W. G. Liu, X. Que, X. T. Yin, D. N. Zhang, L. H. Tang, W. D. He, Z. Y. Zhong and H. W. Zhang, Nano Energy, 2015, 11, 88-95
[72] L. Jiang, T. You and W. Q. Deng, Nanotechnology, 2013, 24, 41
[73] C. Y. Chou, C. P. Lee, R. Vittal and K. C. Ho, J. Power Sources, 2011, 196, 6595-6602
[74] S. Y. Chae, Y. J. Hwang and O. S. Joo, RSC Adv., 2014, 4, 26907-26911
[75] Y. Tachibana, H. Y. Akiyama, Y. Ohtsuka, T. Torimoto and S. Kuwabata, Chem. Lett., 2007, 36, 88
[76] L. Li, X. C. Yang, J. J. Gao, H. N. Tian, J. Z. Zhao, A. Hagfeldt and L. C. Sun, J. Am. Chem. Soc., 2011, 133, 8458-8460
[77] H. Kim, I. Hwang and K. Yong, ACS Appl. Mater. Interfaces, 2014, 6, 11245-11253
[78] Y. Y. Duan, Q. W. Tang, J. Liu, B. L. He and L. M. Yu, Angew. Chem. Int. Ed., 2014, 53, 14569-14574
[79] J. G. Radich, R. Dwyer and P. V. Kamat, J. Phys. Chem. Lett., 2011, 2, 2453-2460
[80] Z. Yang, C. Y. Chen, C. W. Liu and H. T. Chang, Chem. Commun., 2010, 46, 5485-5487
[81] H. J. Kim, T. B. Yeo, S. K. Kim, S. S. Rao, A. D. Savariraj, K. Prabakar and C. V. V. M. Gopi, Eur. J. Inorg. Chem., 2014, 2014, 4281-4286
[82] W. J. Ke, G. J. Fang, H. W. Lei, P. L. Qin, H. Tao, W. Zeng, J. Wang and X. Z. Zhao, J. Power Sources, 2014, 248, 809-815
[83] G. S. Selopal, I. Concina, R. Milan, M. M. Natile, G. Sberveglieri and A. Vomiero, Nano Energy, 2014, 6, 200-210
[84] K. Zhao, H. J. Yu, H. Zhang and X. H. Zhong, J. Phys. Chem. C, 2014, 118, 5683-5690
[85] J. Y. Chang, S. C. Chang, S. H. Tzing and C. H. Li, ACS Appl. Mater. Interfaces, 2014, 6, 22272-22281
[86] Z. Makhdoumi-Kakhaki, A. Youzbashi, P. Sangpour, N. Naderi, A. Kazemzadeh, Journal of Materials Science: Materials in Electronics, 2016, 27, 12931-12939
[87] H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Gratzel and M. K. Nazeeruddin, Nano letters, 2009, 9, 4221-4227
[88] D. Liu, P. V. Kamat, J. Phys. Chem., 1993, 97, 10769-10773
[89] D. Sharma, R. Jha, S. Kumar, Solar Eneygy Materials and Solar Cells, 2016, 155, 294-322
[90] H. Chen, W. Li, H. Liu and L. Zhu, Solar Energy, 2010, 84, 1201-1207
[91] G. Zhu, L. Pan, T. Xu and Z. Sun, ACS Appl. Mater. Interfaces, 2011, 3, 3146-3151
[92] L. Tao, Y. Xiong, H. Liu and W. Shen, Nanoscale, 2014, 6, 931-938
[93] T. P. Niesen and M.R. D. Guire, Solid State Ionics, 2002, 151, 61-68
[94] H. M. Pathan and C. D. Lokhande, Bull. Mater. Sci., 2004, 27, 85-11
[95] R. Zhou, Q. Zhang, J. Tian, D. Myers, M. Yin and G. Cao, J. Phys. Chem. C, 2013, 117, 26948-26956
[96] C. H. Chang and Y. L. Lee, Appl. Phys. Lett., 2007, 91, 053503
[97] I-P. Liu, C. W. Chang, H. Teng and Y. L. Lee, ACS Appl. Mater. Interfaces, 2014, 6, 19378-19384
[98] S. Keuleyan, E. Lhuillier, V. Brajuskovic and P. Guyot-Sionnest, Nature Photonics, 2011, 5, 489-493
[99] L. Li, A. Pandey, D. J. Werder, B. P. Khanal, J. M. Pietryga and V. I. Klimov, J. Am. Chem. Soc., 2011, 133, 1176-1179
[100] C.de M. Donegá, Chem. Soc. Rev., 2011, 40, 1512-1546
[101] A. Zaban, O. I. Micic, B. A. Gregg and A. J. Nozik, Langmuir, 1998, 14, 3153-3156
[102] A. L. Rogach, A. Kornowski, M. Gao, A. Eychmüller and H.Weller, J. Phys. Chem. B, 1999, 103 , 3065-3069
[103] L. Manna, D. J. Milliron, A. Meisel, E. C. Scher and A. P. Alivisatos, Nat. Mater., 2003, 2, 382-385
[104] G. H. Carey, A. L. Abdelhady, Z. Ning, S. M. Thon, O. M. Bakr and E. H. Sargent, Chem. Rev., 2015, 115, 12732-12763
[105] S. G. Kwon, Y. Piao, J. Park, S. Angappane, Y. Jo, N. M. Hwang, J. G. Park and T. Hyeon, J. Am. Chem.Soc., 2007, 129, 12571-12584
[106] I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, J. Am. Chem. Soc., 2006, 128, 2385-2393
[107] J. Chen, J. L. Song, X. W. Sun, W. Q. Deng, C. Y. Jiang, W. Lei, J. H. Hunag and R. S. Liu, Appl. Phys. Lett., 2009, 94, 153115
[108] Z. Pan, H. Zhang, K. Cheng, Y. Hou, J. Hua and X. Zhong, ACS Nano, 2012, 6, 3982-3991
[109] Z. Pan, K. Zhao, J. Wang, H. Zhang, Y. Feng and X. Zhong, ACS Nano, 2013, 7, 5215-5222
[110] G. Wang, H. Wei, Y. Luo, H. Wu, D. Li, X. Zhong, J. Power Sources, 2016, 302, 266-273
[111] J. Wang, Y. Li, Q. Shen, T. Izuishi, Z. Pan, K. Zhao and X. Zhong, J. Mater. Chem. A, 2016, 4, 877-886
[112] J. Yang, J. Y. Kim, J. H. Yu, T. Y. Ahn, H. Lee, T. S. Choi, Y. W. Kim, J. Joo, M. J. Ko and T. Hyeon, Phys. Chem. Chem. Phys., 2013, 15, 20517-20525
[113] Z. Pan, I. Mora-Seró, O. Shen, H. Zhang, Y. Li, K. Zhao, J. Wang, X. Zhong and J. Bisquert, J. Am. Chem. Soc., 2014, 136, 9203-9210
[114] W. Li, Z. Pan, X. Zhong, J. Mater. Chem. A, 2015, 3, 1649-1655
[115] G. Wang, H. Wei, J. Shi, Y. Xu, H. Wu, Y. Luo, D. Li and Q. Meng, Nano Energy, 2017, 35, 17-25
[116] W. Li and X. Zhong, J. Phys. Chem. Lett., 2015, 6, 796-806
[117] J. Yang, T. Oshima, W. Yindeesuk, Z. Pan, X. Zhong and Q. Shen, J. Mater. Chem. A, 2014, 2, 20882-20888
[118] A. N. Jumabekov, F. Deschler, D. Böhm, L. M. Peter, J. Feldmann and T. Bein, J. Phys. Chem. C, 2014, 118, 5142-5149
[119] X. Hu, Q. Zhang, X. Huang, D. Li, Y. Luo and Q. Meng, J. Mater. Chem., 2011, 21, 15903-15905
[120] J. Luo, H. Wei, Q. Huang, X. Hu, H. Zhao, R. Y. D. Li, Y. Luo, Q. Meng, Chem. Commun., 2013, 49, 3881-3883
[121] J. Luo, H. Wei, F. Li, Q. Huang, D. Li, Y. Luo and Q. Meng, Chem. Commun., 2014, 50, 3464-3466
[122] A. Sahasrabudhe and S. Bhattacharyya, Chem. Mater., 2015, 27, 4848-4859
[123] J. Y. Chang, C. H. Li, Y. H. Chang, C. H. Chen and P. N. Li, ACS Appl. Mater. Interfaces, 2016, 8, 18878-18890
[124] C. Guillén, J. Herrero, M. T. Gutiérrez and F. Briones, Thin Solid film, 2005, 480-481, 19-23
[125] D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang and S. Guha, Sol. Energy Mater. Sol. Cell, 2011, 95, 1421-1436
[126] S. Lany and A. Zunger, Phys. Rev. B, 2005, 72, 35215
[127] S. B. Zhang, S. H. Wei, A. Zunger and H. Katayama-Yoshida, Phys. Rev. B, 1998, 57, 9642-9656
[128] M. Uehara, K. Watanabe, Y. Tajiri, H. Nakamura, H. J. Maefa, J. Chem. Phys., 2008, 129, 134709
[129] X. Kang, Y. Yang, L. Huang, Y. Tao, L. Wang and D. Pan, Green Chem., 2015, 17, 4482-4488
[130] P. H. Chuang, C. C. Lin and R. S. Liu, ACS Appl. Mater. Interfaces, 2014, 6, 15379-15387
[131] H. Zhong, S.S. Lo, T. Mirkovic, Y. Li, Y. Ding, Y. Li and G.D. Scholes, ACS Nano, 2010, 4, 5253-5262
[132] R. Kern, R. Sastrawan, J. Ferber, R. Stangl and J. Luther, Electrochim. Acta, 2002, 47, 4213-4225
[133] J. Krüger, R. Plass, M. Grätzel, P. J. Cameron and L. M. Peter, J. Phys. Chem. B, 2003, 107, 7536-7539
[134] O. Lundberg, M. Edoff and L. Stolt, Thin Solid Film, 2005, 480, 520-525
[135] T. Feurer, P. Reinhard, E. Avancini, B. Bissig, J. Löckinger, P. Fuchs, R. Carron, T. P. Weiss, J. Perrenoud, S. Stutterheim, S. Buecheler and A. N. Tiwari, Progress in Photovoltaics:Research and Applications, 2016
[136] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf C. L. Perkins, B. To and R. Noufi, Progress in Photovoltaics:Research and applications, 2008, 16, 235-239
[137] W. Peng, J. Du, Z. Pan, N. Nakazawa, J. Sun, Z. Du, G. Shen, J. Yu, J. S. Hu, Q. Shen and X. Zhong, ACS Appl. Mater. Interfaces, 2017, 9, 5328-5336
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top