|
[1] Sze, Simon Min. Semiconductor devices: physics and technology. John Wiley & Sons, 2008.
[2] Kuo, C. H., Feng, H. C., Kuo, C. W., Chen, C. M., Wu, L. W., & Chi, G. C. (2007). Nitride-based near-ultraviolet light emitting diodes with meshed p‐Ga N. Applied physics letters, 90(14), 142115.
[3] Maruska, H. Á., & Tietjen, J. J. (1969). The preparation and properties of Vapor‐Deposited single‐crystal‐line GaN. Applied Physics Letters, 15(10), 327-329.
[4] Pankove, J. I., Miller, E. A., & Berkeyheiser, J. E. (1973). Electroluminescence in GaN. In Luminescence of Crystals, Molecules, and Solutions (pp. 426-430). Springer US.
[5] Pankove, J. I., Miller, E. A., & Berkeyheiser, J. E. (1972). GaN blue light-emitting diodes. Journal of Luminescence, 5(1), 84-86.
[6] Amano, H., Kito, M., Hiramatsu, K., & Akasaki, I. (1989). P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI). Japanese Journal of Applied Physics, 28(12A), L2112.
[7] Nakamura, S., Iwasa, N., & Senoh, M. (1994). U.S. Patent No. 5,306,662. Washington, DC: U.S. Patent and Trademark Office.
[8] Nakamura, S., Senoh, M., Iwasa, N., & Nagahama, S. I. (1995). High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures. Japanese Journal of Applied Physics, 34(7A), L797. [9] Nakamura, S., Senoh, M., Iwasa, N., & Nagahama, S. I. (1995). High‐power InGaN single‐quantum‐well‐structure blue and violet light‐emitting diodes. Applied Physics Letters, 67(13), 1868-1870.
[10] Nakamura, S., Senoh, M., Nagahama, S. I., Iwasa, N., Yamada, T., Matsushita, T., ... & Kiyoku, H. (1996). Room‐temperature continuous‐wave operation of InGaN multi‐quantum‐well structure laser diodes. Applied Physics Letters, 69(26), 4056-4058.
[11] Nakamura, S., Senoh, M., Nagahama, S. I., Iwasa, N., Yamada, T., Matsushita, T., ... & Kiyoku, H. (1997). Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes with a lifetime of 27 hours. Applied physics letters, 70(11), 1417-1419.
[12] Shen, L., Heikman, S., Moran, B., Coffie, R., Zhang, N. Q., Buttari, D., ... & Mishra, U. K. (2001). AlGaN/AlN/GaN high-power microwave HEMT. IEEE Electron Device Letters, 22(10), 457-459.
[13] Tsao, J. Y. (2004). Solid-state lighting: lamps, chips, and materials for tomorrow. IEEE Circuits and Devices Magazine, 20(3), 28-37.
[14] Lim, J. H., Lee, K. H., & Lim, D. C. (2010). Enhanced performance in GaN light emitting diode by patterned ZnO transparent conducting oxide. Journal of the Korean Physical Society, 57(5), 1229-1232.
[15] Fujii, T., Gao, Y., Sharma, R., Hu, E. L., DenBaars, S. P., & Nakamura, S. (2004). Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Applied physics letters, 84(6), 855-857.
[16] Lee, J. H., Oh, J. T., Park, J. S., Kim, J. W., Kim, Y. C., Lee, J. W., & Cho, H. K. (2006). Improvement of luminous intensity of InGaN light emitting diodes grown on hemispherical patterned sapphire. physica status solidi (c), 3(6), 2169-2173.
[17] Song, J. C., Lee, S. H., Lee, I. H., Seol, K. W., Kannappan, S., & Lee, C. R. (2007). Characteristics comparison between GaN epilayers grown on patterned and unpatterned sapphire substrate (0001). Journal of Crystal Growth, 308(2), 321-324.
[18] Kang, D. H., Song, J. C., Shim, B. Y., Ko, E. A., Kim, D. W., Kannappan, S., & Lee, C. R. (2007). Characteristic comparison of GaN grown on patterned sapphire substrates following growth time. Japanese journal of applied physics, 46(4S), 2563.
[19] Gao, H., Yan, F., Zhang, Y., Li, J., Zeng, Y., & Wang, G. (2008). Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro-and nanoscale. Journal of Applied Physics, 103(1), 014314.
[20] Kim, Y. H., Ruh, H., Noh, Y. K., Kim, M. D., & Oh, J. E. (2010). Microstructural properties and dislocation evolution on a GaN grown on patterned sapphire substrate: A transmission electron microscopy study. Journal of Applied Physics, 107(6), 063501.
[21] Tao, Y. B., Yu, T. J., Yang, Z. Y., Ling, D., Wang, Y., Chen, Z. Z., ... & Zhang, G. Y. (2011). Evolution and control of dislocations in GaN grown on cone-patterned sapphire substrate by Metal Organic Vapor PhaseEpitaxy. Journal of Crystal Growth, 315(1), 183-187.
[22] Margalith, T., Buchinsky, O., Cohen, D. A., Abare, A. C., Hansen, M., DenBaars, S. P., & Coldren, L. A. (1999). Indium tin oxide contacts to gallium nitride optoelectronic devices. Applied Physics Letters, 74(26), 3930-3932.
[23] Lin, Y. C., Chang, S. J., Su, Y. K., Tsai, T. Y., Chang, C. S., Shei, S. C., ... & Chen, S. C. (2003). InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts. Solid-State Electronics, 47(5), 849-853.
[24] Lee, C. L., & Lee, W. I. (2007). Effects of strained InGaN interlayer on contact resistance between p-Ga N and indium tin oxide. Applied physics letters, 90(18), 181125.
[25] Chae, S. W., Kim, K. C., Kim, D. H., Kim, T. G., Yoon, S. K., Oh, B. W., ... & Sung, Y. M. (2007). Highly transparent and low-resistant ZnNi/indium tin oxide Ohmic contact on p-type GaN. Applied physics letters, 90(18), 181101.
[26] Jang, J. S., & Seong, T. Y. (2007). Low-resistance and thermally stable indium tin oxide Ohmic contacts on strained p‐In 0.15 Ga 0.85 N∕ p‐Ga N layer. Journal of applied physics, 101(1), 013711.
[27] Horng, R. H., Wuu, D. S., Lien, Y. C., & Lan, W. H. (2001). Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN. Applied Physics Letters, 79(18), 2925-2927.
[28] Jung, S. P., Ullery, D., Lin, C. H., Lee, H. P., Lim, J. H., Hwang, D. K., ... & Park, S. J. (2005). High-performance GaN-based light-emitting diode using high-transparency Ni∕ Au∕ Al-doped ZnO composite contacts. Applied Physics Letters, 87(18), 181107.
[29] Horng, R. H., Shen, K. C., Yin, C. Y., Huang, C. Y., & Wuu, D. S. (2013). High performance of Ga-doped ZnO transparent conductive layers using MOCVD for GaN LED applications. Optics express, 21(12), 14452-14457.
[30] Faÿ, S., Kroll, U., Bucher, C., Vallat-Sauvain, E., & Shah, A. (2005). Low pressure chemical vapour deposition of ZnO layers for thin-film solar cells: temperature-induced morphological changes. Solar Energy Materials and Solar Cells, 86(3), 385-397. [31] Nam, N. G. (2013). Development of ZnO: Ga Transparent Conducting Oxide Thin Films through Metalorganic Chemical Vapor Deposition using various Zn and Ga Source Materials. National Taiwan University of Science and Technology Department of Chemical Engineering PhD Dissertation.
[32] Wu, J. W. (2015). Process design of CVD of gallium-doped zinc oxide films with light-scattering surface structure.
[33] Wang, B. W. (2016). Annealing treatment on Ga-doped zinc oxide films prepared by LPCVD method at temperature lower than 200℃.
[34] 施敏, 半導體製程概論, 國立交通大學出版社,新竹市 2002.
[35] Wang, M., Jiang, L., Wang, Y., Kim, E. J., & Hahn, S. H. (2015). Growth Mechanism of Preferred Crystallite Orientation in Transparent Conducting ZnO: In Thin Films. Journal of the American Ceramic Society, 98(10), 3022-3028.
|