跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/03 06:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張翔寧
研究生(外文):Hsiang-Ning Chang
論文名稱:反應蒸餾分支進料製造碳酸二苯酯之程序設計與控制
論文名稱(外文):Design and Control of Diphenyl Carbonate Synthesis vis Single Reactive Distillation with the Feed-Splitting Arrangement
指導教授:李豪業
指導教授(外文):Hao-Yeh Lee
口試委員:錢義隆曾堯宣
口試委員(外文):I-Lung ChienYao-Hsuan Tseng
口試日期:2017-07-06
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:117
中文關鍵詞:碳酸二苯酯反應蒸餾分支進料碳酸二甲酯碳酸二乙酯
外文關鍵詞:Diphenyl CarbonateReactive DistillationFeed-SplittingDimethyl CarbonateDiethyl Carbonate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究分別探討分別以碳酸二甲酯(Dimethyl carbonate,DMC)和碳酸二乙酯(Diethyl carbonate,DEC)為反應物製造碳酸二苯酯(diphenyl carbonate,DPC)之程序設計與控制。本研究結合反應蒸餾與分支進料之設計,將此兩種製程整合至單一座反應蒸餾塔中,並採用當量設計以降低設備以及能耗成本。根據穩態模擬之結果顯示,以碳酸二甲酯為反應物之組態相較於Cheng et al. (2013)之研究,可節省59.54% 冷凝器能耗、71.07% 再沸器能耗。而相較於Chen et al. (2015)之研究結果,本研究以碳酸二乙酯之組態設計,可節省75.66% 冷凝器能耗、83.97% 再沸器能耗,以及79.57% 的年總成本。
於動態控制之架構上,採基本庫存環路設計,品質控制環路方面,則採用溫度控制環路以控制產品規格。以靈敏度分析找出溫度靈敏板,再以相對增益矩陣(Relative gain array,RGA)分析控制變數與操作變數之配對,找出適當的控制架構,最後再以±10%產能擾動與5%、10%組成擾動測試控制策略的可行性。此外,根據動態模擬結果,顯示出CS4於碳酸二甲酯之控制架構中有最佳之動態響應,另一方面,碳酸二乙酯之控制架構中,則是CS3為最佳之控制策略。
This research proposes an innovative process to produce diphenyl carbonate (DPC) by applying reactive distillation (RD) technique with the feed-splitting arrangement. This study presented the transesterification reaction of dimethyl carbonate (DMC) and phenyl acetate (PA) as reactants to generate DPC. And the other way generate DPC by using diethyl carbonate (DEC) and PA as reactants. In this thesis, the DPC synthesis via DMC as reactant is called DMC configuration. Similarly, DPC production via DEC as reactant is called DEC configuration.
This research illustrates new configurations to achieve 99.5 % DPC and 99.5% by-product for industrial usage by using one RD column with the feed-splitting arrangement. The optimal RD with feed-splitting configuration is determined by the minimum total annual cost (TAC). The steady state simulation results show that the DMC configuration compares with the study of Cheng et al. (2013) could reduce energy consumption by 59.54% for condenser duty, and 71.07% for reboiler duty, resulting in a 57.99% lower TAC. Besides, DEC configuration compares with the research of Chen et al. (2015) could reduce energy consumption by 75.66% for condenser duty, and 83.97% for reboiler duty, resulting in a 79.57% lower TAC.
In process dynamics, the DMC and DEC proposed designs are used to demonstrate. The inventory control loops are studied to maintain stoichiometric balance. In addition, the dynamic results presented DPC production of both configurations can maintain the specification by temperature controller during ±10% throughput and 5%, 10% composition disturbance. The dynamic performance shows that the best control structure is CS4 in DMC configuration and CS3 in DEC configuration.
Acknowledgements............................................I
摘要........................................................II
Abstract...................................................III
Table of Contents..........................................IV
List of figures............................................VI
List of Tables..............................................X
Chapter 1. Introduction.....................................1
1.1 Background..............................................1
1.2 Literature Survey.......................................6
1.3 Motivation of This Thesis...............................8
1.4 Organization of This Thesis.............................10
Chapter 2. Thermodynamic and Kinetic Model..................12
2.1 Thermodynamic model.....................................12
2.2 Kinetic model...........................................23
Chapter 3. Diphenyl carbonate process via one reactive distillation column with feed-splitting arrangement.........28
3.1 The proposed design.....................................29
3.2 The step of optimization for proposed design............31
3.3 The optimization results of DMC configuration...........41
3.4 The optimization results of DEC configuration...........44
3.5 The comparison of DMC and DEC configurations............47
Chapter 4. The overall control strategy development.........50
4.1 Inventory control loops.................................51
4.2 Quality control loops...................................52
4.3 The DMC control scheme performance in throughput and composition disturbance.....................................58
4.4 The DEC control scheme performance in throughput and composition disturbance.....................................77
Chapter 5. Conclusions and Further study....................90
5.1 Conclusions.............................................90
5.2 Further Study: DMC configuration with impurity design...91
Appendix A: Total Annual Cost Calculation...................97
Appendix B: Energy Price....................................98
Appendix C: The Tuning Method of Controllers................99
Appendix D: The Information of DMC Configuration with Impurity Design......................................................100
References..................................................102
Chinese
1)詹政訓 (Jan, Cheng-Hsun),「分支進料對丙酸丁酯反應蒸餾系統的影響」,國立台灣大學化學工程研究所,碩士論文,2006
2)鄭凱 (Cheng, Kai),「醋酸苯酯與碳酸二甲酯合成碳酸二苯酯之熱結合反應蒸餾系統的設計」,國立清華大學化學工程研究所,碩士論文,2012
3)姚志通 (Yao, Chih-Tung),「乙酸甲酯、碳酸二甲酯、乙酸苯酯、碳酸二苯酯雙成份混合物之相平衡與蒸汽壓沸點之研究」,私立義守大學生物技術與化學工程研究所,碩士論文,2012
4)林士熙 (Lin, Shih-Shi),「合成碳酸二苯酯的高溫高壓反應動力行為研究」國立台灣科技大學化學工程研究所,碩士論文,2014
5)賀校芸 (Ho, Hsiao-Yun),「恆溫下含產製碳酸二苯酯主要成分之混合物的汽液相平衡研究」,國立台灣科技大學化學工程研究所,碩士論文,2014
6)陳登陽 (Chen, Deng-Yang),「以碳酸二乙酯製造碳酸二苯酯之反應蒸餾節能程序研究」,國立台灣科技大學化學工程研究所,碩士論文,2016

English
1)Agreda, V. H. and Partin, L. R. (1984) Reactive Distillation Process for the Production of Methyl Acetate. U.S. Patent 4435595.
2)Al-Arfaj, M. and Luyben, W. L. (2000) Comparison of Alternative Control Structures for an Ideal Two-Product Reactive Distillation Column. Ind. Eng. Chem. Res, 39, 3298-3307.
3)Barbosa, D. and Doherty, M. F. (1988a) Design and minimum Reflux Calculations for Single-Feed Multicomponent Reactive Distillation Columns. Chem. Eng. Sci, 43, 1523-1537.
4)Barbosa, D. and Doherty, M. F. (1988b) Design and minimum Reflux Calculations for Double-Feed Multicomponent Reactive Distillation Columns. Chem. Eng. Sci, 43, 2377.
5)Beckhaus, A. A. (1921) Apparatus for the Manufacture of Esters. U.S. Patent 1400849A.
6)Cardoso, M. F., Salcedo, R. L., Azevedo, S. F. D., Barbosa, D. (2000) Optimization of Reactive Distillation Processes with Simulated Annealing. Chem. Eng. Sci, 55, 5059-5078.
7)Chen, F., Huss, R. S., Malone, M. F., Doherty, M. F. (2000) Simulation of Kinetic Effects in Reactive Distillation. Comput. Chem. Eng, 24, 2457-2472.
8)Chen, D.Y., Weng, K. C., Wang, S. J., Lee, H. Y. (2015) Design of Diphenyl Carbonate Process via Reactive Distillation Configuration. Chem. Eng. Trans, 45, 1195-1200.
9)Chen, H., Zhang, L., Huang, K., Yuan, Y., Zong, X., Wang, S. Liu, L. (2016) Reactive Distillation Columns with two Reactive Sections: Feed Splitting plus External Recycle. Chem. Eng. Proc, 108, 189-196.
10)Cheng, K., Wang, S. J., Wong, D. S. H. (2013) Steady-State Design of Thermally Coupled Reactive Distillation Process for the Synthesis of Diphenyl Carbonate. Comput. Chem. Eng, 52, 262-271.
11)Ciric, A. R. and Miao, P. (1994) Steady State Multiplicities in an Ethylene Glycol Reactive Distillation Column. Ind. Eng. Chem. Res, 33, 2738-2748.
12)DeGaemo, J. L., Parulekar, V. N., Pinjala, V. (1992) Consider Reactive Distillation. Chem. Eng. Prog, 88, 43-50.
13)Doherty, M. F. and Buzard, G. (1992) Reactive Distillation by Design. Chem. Eng. Res. Des, 70. 448-458.
14)Douglas, J. M. (1988) Conceptual Design of Chemical Processes. McGraw-Hill, New York.
15)Harmsen, G. J. (2007) Reactive Distillation: The Front-Runner of Industrial Process Intensification: A full Review of Commercial Applications, Research, Scale-up, Design and Operation. Chem. Eng. Process, 46, 774-780.
16)Ho, H. Y., Shu, S. S., Wang, S. J., Lee, M. J. (2015) Isothermal (Vapor + Liquid) Equilibrium (VLE) for Binary Mixtures Containing Diethyl Carbonate, Phenyl Acetate, Diphenyl Carbonate, or Ethyl Acetate. J. Chem. Thermodynamics, 91, 35-42.
17)Hsu, K. Y., Hsiao, Y. C., Chien, I. L. (2010) Design and Control of Dimethyl Carbonate –Methanol Separation via Extractive Distillation in the Dimethyl Carbonate Reactive Distillation Process. Ind. Eng. Chem. Res, 49, 735-749.
18)Humphrey, J. L. and Siebert, A. F. (1992) Separation Technologies: An Opportunity for Energy Savings. Chem. Eng. Prog, 88, 32-41.
19)Jacobs, R. and Krishna, R. (1993) Multiple Solutions in Reactive Distillation for Methyl Tert-Butyl Ether Synthesis. Ind. Eng. Chem. Res, 32, 1706-1709.
20)Katariya, A., Freund, H., Sundmacher, K. (2009) Two-Step Reactive Distillation Process for Cyclohexanol Production from Cyclohexene. Ind. Eng. Chem. Res, 48, 9534-9545.
21)Kaymak, D. B. and Luyben, W. L. (2004) Design of Distillation Columns with External Side Reactors. Ind. Eng. Chem. Res, 43, 8049-8056.
22)Kim, W. B. and Lee, J. S. (1999) A New Process for the Synthesis of Diphenyl Carbonate from Dimethyl Carbonate and Phenol over Heterogeneous catalysts. Catal Lett, 59, 83-88.
23)Lee, H. Y., Jan, C. H., Chien, I. L., Huang, H. P. (2010) Feed-Splitting Operating Strategy of a Reactive Distillation Column for Energy-Saving Production of Butyl Propionate. J. Taiwan Inst. Chem. Eng, 41, 403-413.
24)Luyben, W. L., Pszalgoeski, K. M., Schaefer, M. R. and Siddons, C. (2004) Design and Control of Conventional and Reactive Distillation Processes for the Production of Butyl Acetate. Ind. Eng. Chem. Res, 43, 8014-8025.
25)Okasinski, M. J. and Doherty M. F. (1998) Design Method for Kinetically Controlled. Staged Reactive, Ind. Eng. Chem. Res, 37, 2821-2834.
26)Shen, R. C., Fang, Y. J., Xiao, W. D. and Zhu, K. H. (2002) Synthesis of Diphenyl Carbonate from Dimethyl Carbonate and Phenyl Acetate. Petrochem. Tech, 31, 897-900.
27)Sikdar, S. K. (1987) The World of Polycarbonate. Chemtech, 17(2), 112-118.
28)Suo, X., Ye, Q., Li, R., Dai, X. and Yu, H. (2016) The Partial Heat-Integrated Pressure-Swing Reactive Distillation Process for Transesterification of Methyl Acetate with Isopropanol. Chem. Eng. Prog. 107, 42-47.
29)Tang, Y T., Huang, H. P. and Chien, I. L. (2003) Design of a Compelete Ethyl Acetate Reactive Distillation System. J. Chem. Eng. Japan, 36, 1352-1363.
30)Taylor, R. and Krichna, R. (2000) Modelling Reactive Distillation. Chem. Eng. Sci, 55, 5183-5229.
31)Tundo, P., Selva M. (2002) The Chemistry of Dimethyl Carbonate. Acc. Chem. Res, 35, 706-716.
32)Turton, R., Bailie, R. C., Whiting, W. B. and Shaelwitz, J. A. (2003) Analysis, Synthesis, and Design of Chemical Processes, 2nd ed. Prentice Hall: Upper Saddle River, NJ.
33)Tyreus, B. D. and Lubyen, W. L. (1992) Tuning PI Controllers dor Integrator/Dead Time Processes. Ind. Eng. Chem, 31(31), 2625-2628.
34)Yu, C. C. (1999) Autotuning of PID Controllers. New York: Springer-Verlag.
35)Zhang, L., Chen, H., Yuan, Y., Wang, S., Huang, K. (2015) Adopting Feed Splitting in Design of Reactive Distillation Columns with Two Reactive Sections. Chem. Eng. Proc, 89, 9-18.
電子全文 電子全文(網際網路公開日期:20270816)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊