跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/08 01:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王愷廷
研究生(外文):Kai-Ting Wang
論文名稱:理論模擬熱程控脫附圖譜的研究: 氨氣與水於二氧化釕之熱程控脫附圖譜
論文名稱(外文):Theoretical Simulation of Temperature-Programmed Desorption: NH3 and H2O on RuO2(110)
指導教授:江志強江志強引用關係
指導教授(外文):Jyh-Chiang Jiang
口試委員:郭哲來林昇佃
口試委員(外文):Jer-Lai KuoShawn D. Lin
口試日期:2017-07-05
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:66
中文關鍵詞:熱程控脫附儀圖譜微觀動力學密度泛函理論
外文關鍵詞:Temperature-Programmed DesorptionMicrokinetic ModelDensity Functional Theory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
熱程控脫附儀圖譜(TPD)被用於推測熱力學參數與了解催化物表面脫附過程之動力學。近年來,微觀動力學結合密度泛函理論(DFT)已發展應用在非均相催化TPD模擬,本篇論文整合先前研究將DFT方法與微觀動力學相結合:考慮吸附物表面覆蓋率並藉由統計熱力學所計算出與溫度相關之指前因子(pre-exponential factor)以取代經驗假設值1013(秒-1)。儘管我們提出的模型預測了吸附物的物理吸附和化學吸附峰符合實驗的TPD光譜,但它不能解釋物理吸附和化學吸附情況之間的區域,並且低估了這些區域中被吸附物的強度。 因此為了改進我們的模型,在本研究中我們考慮了吸附物從單層到第二層的擴散,併計算了NH3和H2O在二氧化釕(110)作為測試用例的TPD光譜。 此外,我們還使用縮合近似而不是數值近似來計算脫附速率。 我們的研究結果表明,NH3在高覆蓋率下的擴散活化能小於直接脫附能,NH3的模擬TPD光譜與以前的實驗結果一致。
Temperature programmed desorption (TPD) studies have been used as a tool in surface catalytic reactions to determine the thermodynamic parameters and kinetics of desorption processes. This technique involves adsorption of selected adsorbate at low temperature, and then its desorption rate is measured as the temperature is increased. In recent years, the development of microkinetic models along with density functional theory (DFT) methods has applied to simulate the TPD spectra in the heterogeneous catalysis. Besides, in our earlier study, we proposed a model combine DFT methods with microkinetics, which consists of coverage-dependent desorption energies and temperature-dependent pre-exponential factors to investigate the TPD spectra of NH3 and H2O on RuO2 (110) surface. Even though our proposed model predicts both physisorption and chemisorption peaks of both adsorbates with the experimental TPD spectra, it fails to explain the region between the physisorption and chemisorption cases, and it underestimates the intensity of the adsorbate in these areas. Hence, to improve our model, in this study we have considered the diffusion of adsorbate from sub-mono layer to the second layer and calculated the TPD spectra of both NH3 and H2O as a test case. Further, we also used the condensation approximation instead of numerical approximation to calculate the desorption rates. Our results indicate that the diffusion barrier of NH3 at high coverage is smaller than the direct desorption energies and simulated TPD spectra for NH3 is in agreement with the previous experimental results.
摘要 I
ABSTRACT II
致謝 III
CONTENTS IV
FIGURES INDEX VI
TABLES INDEX IX
Chapter 1. Introduction 1
1.1 Temperature-Programmed Desorption Spectra 1
1.2 TPD experimental process 1
1.3 Analytic method for TPD 2
1.4 Theoretical Methods for Simulating TPD Spectra 5
1.4.1 Microkinetic Modeling 5
1.4.2 Condensation Approximation Method 7
Chapter 2. Methodology 9
2.1 Quantum Chemical Calculation 9
2.2 Thermodynamic Constants 10
2.3 Microkinetic Model 13
Type 1: Desorption Model: 13
Type 2: Diffusion Model: 15
2.4 TPD Spectra 16
Chapter 3. NH3 and H2O Thermal Desorption on stoichiometric RuO2(110) 21
3.1 RuO2 21
3.2 NH3 and H2O on RuO2(110) 23
Chapter 4. Results and Discussion 27
4.1 Benchmark calculations 27
4.1.1 The CA method applied in TPD simulation 27
4.2 NH3 and H2O desorption 30
4.3 Simulated TPD spectra for NH3 and H2O 33
4.4 Effect of Diffusion of adsorbents 37
4.4.1 NH3 37
4.4.2 H2O diffusion on RuO2(110) 41
Chapter 5. Extended Application 44
5.1 Heating Rate Optimization 44
Chapter 6. Summary 45
References 46
Appendices 48
1. Falconer, J., Desorption rate isotherms in flash desorption analysis. Journal of Catalysis 1977, 48 (1-3), 262-268.
2. Anger, G.; Winkler, A.; Rendulic, K. D., Adsorption and desorption kinetics in the systems H2/Cu(111), H2/Cu(110) and H2/Cu(100). Surface Science 1989, 220 (1), 1-17.
3. Wu, S.-j.; Katayama, R.; Azhar Uddin, M.; Sasaoka, E.; Xie, Z.-m., Study on Reactivity of HgO over Activated Carbon with HCl and SO2in the Presence of Moisture by Temperature-Programmed Decomposition Desorption Mass Spectrometry. Energy & Fuels 2015, 29 (10), 6598-6604.
4. Li, J. P. H.; Liu, Z.; Wu, H.; Yang, Y., Investigation of CO oxidation over Au/TiO 2 catalyst through detailed temperature programmed desorption study under low temperature and Operando conditions. Catalysis Today 2017.
5. Ma, L.; Cheng, Y.; Cavataio, G.; McCabe, R. W.; Fu, L.; Li, J., In situ DRIFTS and temperature-programmed technology study on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts. Applied Catalysis B: Environmental 2014, 156-157, 428-437.
6. Lobo, A.; Conrad, H., Interaction of H2O with the RuO2(110) surface studied by HREELS and TDS. Surface Science 2003, 523 (3), 279-286.
7. Medford, A. J.; Wellendorff, J.; Vojvodic, A.; Studt, F.; Abild-Pedersen, F.; Jacobsen, K. W.; Bligaard, T.; Norskov, J. K., Catalysis. Assessing the reliability of calculated catalytic ammonia synthesis rates. Science 2014, 345 (6193), 197-200.
8. Tafreshi, S. S.; Roldan, A.; de Leeuw, N. H., Micro-kinetic simulations of the catalytic decomposition of hydrazine on the Cu(111) surface. Faraday Discuss 2017, 197, 41-57.
9. Filot, I. A. W.; Broos, R. J. P.; van Rijn, J. P. M.; van Heugten, G. J. H. A.; van Santen, R. A.; Hensen, E. J. M., First-Principles-Based Microkinetics Simulations of Synthesis Gas Conversion on a Stepped Rhodium Surface. ACS Catalysis 2015, 5 (9), 5453-5467.
10. Honkala, K.; Hellman, A.; Remediakis, I. N.; Logadottir, A.; Carlsson, A.; Dahl, S.; Christensen, C. H.; Norskov, J. K., Ammonia synthesis from first-principles calculations. Science 2005, 307 (5709), 555-558.
11. Kandoi, S.; Gokhale, A. A.; Grabow, L. C.; Dumesic, J. A.; Mavrikakis, M., Why Au and Cu are more selective than Pt for preferential oxidation of CO at low temperature. Catalysis Letters 2004, 93 (1-2), 93-100.
12. Medford, A. J.; Shi, C.; Hoffmann, M. J.; Lausche, A. C.; Fitzgibbon, S. R.; Bligaard, T.; Nørskov, J. K., CatMAP: A Software Package for Descriptor-Based Microkinetic Mapping of Catalytic Trends. Catalysis Letters 2015, 145 (3), 794-807.
13. Cerofolini, G. F.; Re, N., Extracting the Energy Distribution Functions of Heterogeneous Surfaces from Their Desorption Kinetics. Journal of Colloid and Interface Science 1995, 174 (3).
14. De Micheli, E.; Viano, G. A., Fredholm Integral Equations of the First Kind and Topological Information Theory. Integral Equations and Operator Theory 2012, 73 (4), 553-571.
15. Seebauer, E. G., Quantitative extraction of continuous distributions of energy states and pre-exponential factors from thermal desorption spectra. Surface Science 1994, 316 (3), 391-405.
16. Bogillo, V. I.; Shkilev, V. P., Evaluation of desorp energy distri from TPD Spectra on a Heterogeneous Solid Surface. Journal of Thermal Analysis and Calorimetry 1999, 55 (2), 483-492.
17. Barrie, P. J., Analysis of temperature programmed desorption (TPD) data for the characterisation of catalysts containing a distribution of adsorption sites. Phys Chem Chem Phys 2008, 10 (12), 1688-96.
18. Kresse, G.; Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science 1996, 6 (1), 15-50.
19. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B 1992, 46 (11), 6671-6687.
20. Perdew, J. P.; Yue, W., Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Physical Review B 1986, 33 (12), 8800-8802.
21. Perdew, J. P.; Wang, Y., Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B 1992, 45 (23), 13244-13249.
22. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 1999, 59 (3), 1758-1775.
23. Monkhorst, H. J.; Pack, J. D., Special points for Brillouin-zone integrations. Physical Review B 1976, 13 (12), 5188-5192.
24. Thonhauser, T.; Cooper, V. R.; Li, S.; Puzder, A.; Hyldgaard, P.; Langreth, D. C., Van der Waals density functional: Self-consistent potential and the nature of the van der Waals bond. Physical Review B 2007, 76 (12).
25. Klimes, J.; Bowler, D. R.; Michaelides, A., Chemical accuracy for the van der Waals density functional. J Phys Condens Matter 2010, 22 (2), 022201.
26. Lee, K.; Murray, É. D.; Kong, L.; Lundqvist, B. I.; Langreth, D. C., Higher-accuracy van der Waals density functional. Physical Review B 2010, 82 (8).
27. Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 2011, 32 (7), 1456-65.
28. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 2010, 132 (15), 154104.
29. Henkelman, G.; Uberuaga, B. P.; Jónsson, H., A climbing image nudged elastic band method for finding saddle points and minimum energy paths. The Journal of Chemical Physics 2000, 113 (22), 9901-9904.
30. Pérez-Ramírez, J.; López, N. r.; Kondratenko, E. V., Pressure and Materials Effects on the Selectivity of RuO2in NH3Oxidation. The Journal of Physical Chemistry C 2010, 114 (39), 16660-16668.
31. Sohrabnejad-Eskan, I.; Goryachev, A.; Exner, K. S.; Kibler, L. A.; Hensen, E. J. M.; Hofmann, J. P.; Over, H., Temperature-Dependent Kinetic Studies of the Chlorine Evolution Reaction over RuO2(110) Model Electrodes. ACS Catalysis 2017, 7 (4), 2403-2411.
32. Nordvang, E. C.; Schill, L.; Riisager, A.; Fehrmann, R., Ruthenium Dioxide Catalysts for the Selective Oxidation of Benzylamine to Benzonitrile: Investigating the Effect of Ruthenium Loading on Physical and Catalytic Properties. Topics in Catalysis 2017.
33. Wang, C.-C.; Yang, Y.-J.; Jiang, J.-C., DFT Study of NHx(x= 1−3) Adsorption on RuO2(110) Surfaces. The Journal of Physical Chemistry C 2009, 113 (7), 2816-2821.
34. Wang, C.-C.; Yang, Y.-J.; Jiang, J.-C.; Tsai, D.-S.; Hsieh, H.-M., Density Functional Theory Study of the Oxidation of Ammonia on RuO2(110) Surface. The Journal of Physical Chemistry C 2009, 113 (40), 17411-17417.
35. Wang, Y.; Jacobi, K.; Schone, W. D.; Ertl, G., Catalytic oxidation of ammonia on RuO2(110) surfaces: mechanism and selectivity. J Phys Chem B 2005, 109 (16), 7883-93.
36. Wang, C.-C.; Wu, J.-Y.; Jiang, J.-C., Microkinetic Simulation of Temperature-Programmed Desorption. The Journal of Physical Chemistry C 2013, 117 (12), 6136-6142.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top