|
1. Shimotake, H., Progress in batteries and solar cells. 1990: JEC Press. 2. Marom, R., et al., A review of advanced and practical lithium battery materials. Journal of Materials Chemistry, 2011. 21(27): p. 9938-9954. 3. Diaz-Gonzalez, F., et al., A review of energy storage technologies for wind power applications. Renewable & Sustainable Energy Reviews, 2012. 16(4): p. 2154-2171. 4. Lu, L.G., et al., A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources, 2013. 226: p. 272-288. 5. Tarascon, J.-M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 2001. 414: p. 359-367. 6. Liu, D. and G. Cao, Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium ion intercalation. Energy & Environmental Science, 2010. 3(9): p. 1218. 7. LINDEN, D. and T.B. REDDY, HANDBOOK OF BATTERYS, ed. T. EDITION. 2002, New York: McGraw-Hill. 8. Xu, K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev., 2004. 104: p. 4303-4417. 9. Besenhard, J.O. and M. Winter, Advances in Battery Technology : Rechargeable Magnesium Batteries and Novel Negative- Electrode Materials for Lithium Ion Batteries. Chemphyschem : a European journal of chemical physics and physical chemistry, 2002. 3: p. 155-159. 10. Dey, a.N. and B.P. Sullivan, The Electrochemical Decomposition of Propylene Carbonate on Graphite. Journal of The Electrochemical Society, 1970. 117: p. 222-224. 11. Goodenough, J.B. and Y. Kim, Challenges for rechargeable batteries. Journal of Power Sources, 2011. 196: p. 6688-6694. 12. Winter, M., et al., InsertioneElectrode materials for rechargeable lithium batteries.Adv. Mater, 1998. 10(10): p. 725-763. 13. Shimotake, H., Progress in batteries and solar cells. 1990: JEC Press. 14. Xu, B., et al., Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science and Engineering R, 2012. 73(5-6): p. 51-65. 15. Fergus, J.W., Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources, 2010. 195: p. 939-954. 16. Julien, C.M., et al., Comparative Issues of Cathode Materials for Li-Ion Batteries. inorganics, 2014. 2: p. 132-154.
17. Li, T., et al., <17. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 2008. 15: p. 74. 18. Whittingham, M.S., Lithium Batteries and Cathode Materials. Chem. Rev., 2004. 104: p. 4271-4301. 19. Winter, M., et al., Insertion electrode materials for rechargeable lithium batteries. Adv. Mater., 1998. 10(10): p. 725-763. 20. Mizushima, K., et al., LixCoO 2 (021. Koksbang, R., et al., <19 Solid State lonics 84 ,1996, 1-21.pdf>. Solid State lonics, 1996. 84: p. 1. 22. Arai, H., et al., Reversibility of LiNiO2 cathode Solid State Ionics 1997. 95: p. 275- 282. 23. Stoyanova, R., Lithium/nickel mixing in the transition metal layers of lithium nickelate: high-pressure synthesis of layered Li[LixNi1−x]O2 oxides as cathode materials for lithium-ion batteries. Solid State Ionics, 2003. 161(3-4): p. 197-204. 24. Kim, Y., D. Kim, and S. Kang, Experimental and First-Principles Thermodynamic Study of the Formation and Effects of Vacancies in Layered Lithium Nickel Cobalt Oxides. Chemistry of Materials, 2011. 23(24): p. 5388-5397. 25. Ohzuku, T., A. Ueda, and M. Kouguchi, <22 Ohzuku T, Ueda A, Kouguchi M J Electrochem Soc 142, 1995, 4033.pdf>. Journal of The Electrochemical Society, 1995. 142: p. 4033. 26. Kim, Y., D. Kim, and S. Kang, <27 Experimental and First-Principles Thermodynamic Study of the Formation and Effects of Vacancies in Layered Lithium Nickel Cobalt Oxides. Chemistry of Materials, 2011. 23(24): p. 5388-5397. 27. Armstorng, A.R. and P.G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature, 1996. 381: p. 499-500. 28. Armstrong, A.R., et al., Combined Neutron Diffraction, NMR, and Electrochemical Investigation of the Layered-to-Spinel Transformation in LiMnO2. Chem. Mater., 2004. 16: p. 3106-3118. 29. Jansen, A.N., et al., Development of a high-power lithium-ion battery. J. Power Sources, 1999. 81-82: p. 902-905. 30. Amatucci, G.G., J.M. Tarascon, and L.C. Klein, Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries. Solid State Ionics, 1996. 83(1–2): p. 167-173. 31. Padhi, A.K., K.S. Nanjundaswamy, and J.B. Goodenough, <40 A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144 (1997) 1188..pdf>. Journal of The Electrochemical Society 1997. 144: p. 1188. 32. Takahashi, M., et al., <42 M. Takahashi, S.I. Tobishima, K. Takei, Y. Sakurai, Solid State Ionics 148 (2002) 283..pdf>. Solid State Ionics 2002. 148: p. 283 33. Chung, S.-Y., J.T. Bloking, and Y.-M. Chiang, <48. Nature Materials, 2002. 1: p. 123. 34. MacNeila, D.D., et al., <41 D.D. MacNeil, Z. Lu, Z. Chen, J.R. Dahn, J. Power Sources 108 (2002) 8..pdf>. Journal of Power Sources 2002. 108: p. 8. 35. Thackeray, M.M., et al., Electrochemical extraction of lithium from LiMn2O4. Materials Research Bulletin, 1984. 19(2): p. 179-187. 36. Aurbach, D., et al., Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques. Journal of Power Sources, 1999. 81 82(0): p. 472-479. 37. Wang, L., et al., First-principles study of surface properties ofLiFePO4: Surface energy, structure, Wulff shape, and surface redox potential. Physical Review B, 2007. 76(16). 38. Christensen, A. and E.A. Carter, First-principles study of the surfaces of zirconia. Phys. Rev. B, 1998. 58(12): p. 8050-8064. 39. Xu, K., Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chemical Reviews, 2014. 114(23): p. 11503-11618. 40. Ogata, S., N. Ohba, and T. Kouno, Multi-Thousand-Atom DFT Simulation of Li-Ion Transfer through the Boundary between the Solid–Electrolyte Interface and Liquid Electrolyte in a Li-Ion Battery. J. Phys. Chem. C, 2013. 117(35): p. 17960-17968. 41. Borodin, O., W. Behl, and T.R. Jow, Oxidative Stability and Initial Decomposition Reactions of Carbonate, Sulfone, and Alkyl Phosphate-Based Electrolytes. J. Phys. Chem. C, 2013. 117(17): p. 8661-8682. 42. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews, 2004. 104: p. 4303-4417. 43. Nagaura, K. and K. Tozawa, Progress in Batteries and Solar Cells. Vol. 9. 1990, Brunswick OH, USA: JEC Press Inc. and IBA Inc. 209. 44. Botte, G.G., R.E. White, and Z. Zhang, Thermal stability of LiPF6–EC:EMC electrolyte for lithium ion batteries. Journal of Power Sources, 2001. 97-98: p. 570-575. 45. Campion, C.L., W. Li, and B.L. Luch, Thermal Decomposition of LiPF[sub 6]-Based Electrolytes for Lithium-Ion Batteries. Journal of The Electrochemical Society, 2005. 152: p. A2327-A2334. 46. Sloop, S.E., et al., Chemical Reactivity of PF[sub 5] and LiPF[sub 6] in Ethylene Carbonate/Dimethyl Carbonate Solutions. Electrochemical and Solid-State Letters, 2001. 4: p. A42-A44. 47. Wang, X., E. Yasukawa, and S. Kasuya, Lithium Imide Electrolytes with Two-Oxygen- Atom-Containing Cycloalkane Solvents for 4 V Lithium Metal Rechargeable Batteries. Journal of The Electrochemical Society, 2000. 147: p. 2421-2426. 48. Handa, M., et al., A New Lithium Salt with a Chelate Complex of Phosphorus for Lithium Battery Electrolytes. Electrochemical and Solid-State Letters, 1999. 2: p. 60-62. 49. Schmidt, M., et al., Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries. Journal of Power Sources, 2001. 97–98: p. 557-560. 50. Aravindan, V., et al., Lithium-ion conducting electrolyte salts for lithium batteries. Chemistry, 2011. 17: p. 14326-14346.
51. Barthel, J., et al., A New Class of Electrochemically and Thermally Stable Lithium Salts for Lithium Battery Electrolytes: I . Synthesis and Properties of Lithium bis[1,2‐ benzenediolato(2‐ )‐O,O′]borate Journal of The Electrochemical Society 1995. 142 p. 2527-2531. 52. Handa, M., S. Fukuda, and Y. Sasaki, Use of a Chelate Complex with Boron as a Lithium Salt for Lithium Battery Electrolytes. Journal of the Electrochemical Society Letters, 1997. 144: p. L235-L237. 53. Xu, W. and C.A. Angell, LiBOB and Its Derivatives Weakly Coordinating Anion, and the Exceptional Conductivity of Their Nanoqueous Solutions. Electrochemical and Solid-State Letters, 2001. 4: p. E1-E4. 54. Fergus, J.W., Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources, 2010. 195(15): p. 4554-4569. 55. Shui Zhang, S., An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochemistry Communications, 2006. 8: p. 1423-1428. 56. Xu, W., et al., LiMOB, an Unsymmetrical Nonaromatic Orthoborate Salt for Nonaqueous Solution Electrochemical Applications. Journal of The Electrochemical Society, 2004. 151: p. A632-A638. 57. Tan, S., et al., Recent Progress in Research on High-Voltage Electrolytes for Lithium-Ion Batteries. A European Journal of Chemical Physics and Chemistry, 2014. 15(10): p. 1956- 1969. 58. Goodenough, J.B. and Y. Kim, Challenges for Rechargeable Li Batteries. Chemistry of Materials, 2010. 22(3): p. 587-603. 59. Duncan, H., N. Salem, and Y. Abu-Lebdeh, Electrolyte Formulations Based on Dinitrile Solvents for High Voltage Li-Ion Batteries. Journal of The Electrochemical Society, 2013. 160(6): p. A838-A848. 60. Besenhard, J.O., et al., Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. Journal of Power Sources, 1995. 54(2): p. 228-231.
61. Chung, G.C., et al., Origin of Graphite Exfoliation An Investigation of the Important Role of Solvent Cointercalation. Journal of The Electrochemical Society, 2000. 147(12): p. 4391-4398. 62. Xu, K., M.S. Ding, and T.R. Jow, Quaternary Onium Salts as Nonaqueous Electrolytes for Electrochemical Capacitors. Journal of The Electrochemical Society, 2001. 148(3): p. A267-A274. 63. Foster, D.L., W.K. Behl, and J. Wolfenstine, The effect of various electrolyte additives on reversible Li-graphite intercalation. Journal of Power Sources, 2000. 85(2): p. 299-301. 64. Tobishima, S., Y. Ogino, and Y. Watanabe, Influence of electrolyte additives on safety and cycle life of rechargeable lithium cells. Journal of Applied Electrochemistry, 2003. 33(2): p. 143-150. 65. Zhang, S.S., A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006. 162(2): p. 1379-1394. 66. Xu, K., S. Zhang, and R. Jow, Electrochemical impedance study of graphite/electrolyte interface formed in LiBOB/PC electrolyte. Journal of Power Sources, 2005. 143(1–2): p. 197-202. 67. Spahr, M.E., et al., Exfoliation of Graphite during Electrochemical Lithium Insertion in Ethylene Carbonate-Containing Electrolytes. Journal of The Electrochemical Society, 2004. 151(9): p. A1383-A1395. 68. Mansour, A.N., Characterization of LiNiO2 by XPS. Surface Science Spectra, 1994. 3(3): p. 279. 69. Aurbach, D., et al., The study of surface phenomena related to electrochemical lithium intercalation into LixMOy host materials (M=Ni, Mn). J. Electrochem. Soc., 2000. 147(4): p. 1322-1331. 70. Aurbach, D., Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources, 2000. 89: p. 206-218. 71. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews, 2004. 104: p. 4303-4417. 72. Aurbach, D., et al., Common Electroanalytical Behavior of Li Intercalation Processes into Graphite and Transition Metal Oxides. Journal of The Electrochemical Society, 1998. 145(9): p. 3024-3034. 73. Paled, E., The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model. J. Electrochem. Soc., 1979. 126: p. 2047-2051. 74. Besenhard, J.O., et al., Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. Journal of Power Sources, 1995. 54(2): p. 228-231. 75. Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. (December 1992). "UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations" (PDF). Journal of the American Chemical Society. 114 (25): 10024–10035. doi:10.1021/ja00051a040. 76. Zhou, F., et al., First-principles prediction of redox potentials in transition-metal compounds withLDA+U. Physical Review B, 2004. 70(23). 77. Xiong, D., et al., A High Precision Study of the Effect of Vinylene Carbonate (VC) Additive in Li/Graphite Cells. Journal of The Electrochemical Society, 2011. 158(12): p. A1431- A1435. 78. Kang, Xu., et al., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. 2004, 104, 4303−4417
|