|
1. Perler, F.B., et al., Protein splicing elements: inteins and exteins--a definition of terms and recommended nomenclature. Nucleic Acids Research, 1994. 22(7): p. 1125-1127. 2. Xing, L., et al., Streamlined protein expression and purification using cleavable self-aggregating tags. Microb Cell Fact, 2011. 10: p. 42. 3. Duong-Ly, K.C. and S.B. Gabelli, Salting out of Proteins Using Ammonium Sulfate Precipitation. Methods in Enzymology, 2014. 541: p. 85-94. 4. Gaudin, C., et al., CelE, a Multidomain Cellulase from Clostridium cellulolyticum: a Key Enzyme in the Cellulosome? Journal of Bacteriology, 2000. 182(7): p. 1910-1915. 5. Coskun, O., Separation techniques: Chromatography. Northern Clinics of Istanbul, 2016. 3(2): p. 156-160. 6. Hassouneh, W., T. Christensen, and A. Chilkoti, Elastin-like polypeptides as a purification tag for recombinant proteins. Curr Protoc Protein Sci, 2010. Chapter 6: p. Unit 6 11. 7. Li, B. and V. Daggett, The molecular basis of the temperature- and pH-induced conformational transitions in elastin-based peptides. Biopolymers, 2003. 68(1): p. 121-129. 8. Smits, F.C., et al., Elastin-like polypeptide based nanoparticles: design rationale toward nanomedicine. Macromol Biosci, 2015. 15(1): p. 36-51. 9. Li, N.K., et al., Molecular description of the LCST behavior of an elastin-like polypeptide. Biomacromolecules, 2014. 15(10): p. 3522-30. 10. Liu, F., et al., Engineering a high-affinity scaffold for non-chromatographic protein purification via intein-mediated cleavage. Biotechnol Bioeng, 2012. 109(11): p. 2829-35. 11. Fong, B.A., W.Y. Wu, and D.W. Wood, Optimization of ELP-intein mediated protein purification by salt substitution. Protein Expr Purif, 2009. 66(2): p. 198-202. 12. Shi, C., Q. Meng, and D.W. Wood, A dual ELP-tagged split intein system for non-chromatographic recombinant protein purification. Appl Microbiol Biotechnol, 2013. 97(2): p. 829-35. 13. Tian, L. and S.S.M. Sun, A Cost-Effective ELP-Intein Coupling System for Recombinant Protein Purification from Plant Production Platform. PLoS ONE, 2011. 6(8): p. e24183. 14. Kulp, A. and M.J. Kuehn, Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol, 2010. 64: p. 163-84. 15. K.E.Bonnington, M.J.K., Protein selection and export via outer membrane vesicles. BBA-Mol Cell Res, 2014. 1843: p. 1612-1619. 16. McBroom, A.J., et al., Outer membrane vesicle production by Escherichia coli is independent of membrane instability. J Bacteriol, 2006. 188(15): p. 5385-92. 17. McBroom AJ, K.M., Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol Microbiol, 2007. 63: p. 545-548. 18. Deatherage, B.L., et al., Biogenesis of bacterial membrane vesicles. Mol Microbiol, 2009. 72(6): p. 1395-407. 19. Schwechheimer, C., C.J. Sullivan, and M.J. Kuehn, Envelope control of outer membrane vesicle production in Gram-negative bacteria. Biochemistry, 2013. 52(18): p. 3031-40. 20. Kobayashi H, U.K., Hirayama H, Horikoshi K, Novel toluene elimination system in a toluene-tolerant microorganism. J Bacteriol, 2000. 182: p. 6451-6455. 21. Amano, A., H. Takeuchi, and N. Furuta, Outer membrane vesicles function as offensive weapons in host-parasite interactions. Microbes Infect, 2010. 12(11): p. 791-8. 22. Kuehn MJ, K.N., Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev, 2005. 19: p. 2645-2655. 23. TJ, B., Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol, 1999. 181: p. 4725-4733. 24. Chutkan H, M.I., Manning A, Kuehn MJ, Quantitative and qualitative preparations of bacterial outer membrane vesicles. Methods MolBiol, 2013. 966(259-272). 25. Klimentova, J. and J. Stulik, Methods of isolation and purification of outer membrane vesicles from gram-negative bacteria. Microbiol Res, 2015. 170: p. 1-9. 26. M.M. Benning, M.J.K., M.F. Raushel, H.M. Holden, Three-Dimensional Structure of Phosphotriesterase An Enzyme Capable of Detoxifying Organophosphate Nerve Agents. Biochemistry, 1994. 33: p. 15001-15007. 27. G.A. Omburo, J.M.K., L.S. Mullins, F.M. Raushel, Characterisation of the zinc binding site of bacterial phosphotriesterase. J. Biol. Chem., 1992. 267: p. 13278-13283. 28. Richins RD, K.I., Mulchandani A, ChenW, Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nat Biotechnol, 1997. 15: p. 984-987. 29. Richins RD, K.I., Mulchandani A, ChenW, Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nat Biotechnol, 1997. 15: p. 984-987. 30. Shimazu M, M.A., Chen W, Simultaneous degradation of organophosphorus pesticides and p-nitrophenol by a genetically engineered Moraxella sp. with surface expressed organophosphorus hydrolase. Biotechnol Bioeng, 2001. 76: p. 318-324. 31. Shimazu M, N.A., Mulchandani A, Chen W, Cell surface display of OPH in Pseudomonas putida using an ice-nucleation protein anchor. Biotechnol Prog, 2003. 19: p. 1612-1614. 32. Takayama K, S.S., Kuroda K,Ueda M, Kitaguchi T, Tsuchiyama K, et al, Surface Display of Organophosphorus Hydrolase on Saccharomyces cerevisiae. Biotechnol Prog, 2006. 22: p. 939-943. 33. Bhat, M.K. and S. Bhat, Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances, 1997. 15(3): p. 583-620. 34. Béguin, P. and J.-P. Aubert, The biological degradation of cellulose. FEMS Microbiology Reviews, 1994. 13(1): p. 25-58. 35. Gusakov, A.V., E.G. Kondratyeva, and A.P. Sinitsyn, Comparison of two methods for assaying reducing sugars in the determination of carbohydrase activities. Int J Anal Chem, 2011. 2011: p. 283658. 36. Craig, S.J., F.C. Foong, and R. Nordon, Engineered proteins containing the cohesin and dockerin domains from Clostridium thermocellum provides a reversible, high affinity interaction for biotechnology applications. J Biotechnol, 2006. 121(2): p. 165-73. 37. Stahl, S.W., et al., Single-molecule dissection of the high-affinity cohesin-dockerin complex. Proc Natl Acad Sci U S A, 2012. 109(50): p. 20431-6. 38. Weng, Z., et al., Structure-function analysis of SH3 domains: SH3 binding specificity altered by single amino acid substitutions. Molecular and Cellular Biology, 1995. 15(10): p. 5627-5634. 39. van Bloois, E., et al., Decorating microbes: surface display of proteins on Escherichia coli. Trends Biotechnol, 2011. 29(2): p. 79-86.
|