跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 19:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂盈霖
研究生(外文):YING-LIN LU
論文名稱:類彈性蛋白標籤在重組蛋白中純化之應用
論文名稱(外文):Application of Elastin-like polypeptide tag for recombinant proteins purification
指導教授:蔡伸隆
指導教授(外文):Shen-Long Tsai
口試委員:李振綱吳宛儒
口試委員(外文):Cheng-Kang LeeWan-Ru Wu
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:86
中文關鍵詞:類彈性蛋白標籤純化
外文關鍵詞:Elastin-like polypeptide tagspurification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:756
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
重组蛋白的分離與纯化一直是生物化學研究中所面臨的一大困難,利用常規的蛋白質純化技術,例如:親和層析(Affinity chromatography),不僅成本高,耗時長,純化效率又不高,因此,發展一套簡單易操作之蛋白質純化之技術,為本研究之首要目標。
類彈性蛋白(elastin-like polypeptide, ELP)標籤,被視為最具有前瞻性的重组蛋白纯化標籤。而類彈性蛋白主要是由五肽重複序列單元(VPGXG)串聯组成,具有溫度誘導的可逆相變特性。不僅ELP本身具有這個特性,當ELP與目的蛋白融合後,也會赋予重组蛋白有相類似的可逆相變性質。因此,藉由多次可逆相變循環(inverse transition cycling, ITC)之後,就可以從蛋白質粗萃取混合液中選擇性地分離出ELP融合蛋白(fusion protein),再經特異性酶切或者改變環境條件而引發内含肽(Intein)發生自我剪切去除ELP標籤,從而得到單一的目的蛋白,從而實現簡單快速分離纯化重组蛋白。目前,利用類彈性蛋白結合內蛋白子之技術,已成功應用於原核大腸桿菌和植物表達系统中。而這種利用類彈性蛋白標籤達到分離纯化重组蛋白的方法,具有技術簡單、操作快速、成本低、易於擴大等優點。
本研究主要是藉由基因轉殖技術來改善重組蛋白分離與純化之問題,利用ELP標籤來達到回收與純化之目的,而本研究分為兩部分,第一部分為利用雙質體系統同時表面展示(Surface display)ELP及OPH,利用ELP標籤來回收外膜囊泡,並利用OPH活性來判定是否回收成功;第二部分為分別建構並表達三個酵素系統,使其彼此間專一性的結合成一巨大複合體後,利用ELP來純化此複合體,最終達到回收三個酵素之效果。
The separation and purification of recombinant proteins has been a difficult issue in the field of biochemistry for a long time, The use of conventional protein purification techniques such as affinity chromatography, is not only high cost and time-consuming, the purification efficiency is also not high. Hence, the development of a simple protein separation and purification technique is the primary goal.

Elastin-like polypeptide (ELP) tag is an extremely promising recombinant protein purification tag. The artificial polypeptide consists of repeats of the penta-peptide (VPGXG) with a reversible phase transition at a specific temperature. ELP fusion protein, a target protein fused to the ELP at the gene level, equally retains this behavior. Hence, after isolating a recombinant ELP fusion protein from the protein solution by several runs of inverse transition cycling (ITC), the ELP tag can be proteolytically removed, or be removed through intein-mediated self cleavage which responds to condition shift in the solution, and then the pure target protein can be recovered. At present, the method is used successfully in expression systems such as E.coli and plants. This non-chromatographic protein purification method is simple, rapid, cost- effective, and easy to scale up.

In this study, genetic engineering techniques are used to improve the purification of recombinant proteins, specifically, the utilization of ELP tag to achieve the aim of recovering and purifying the proteins. This study consists of two parts. The first part is to surface display both ELP and organophosphorus hydrolase(OPH) by using a two-vector system, then recover the outer membrane vesicles through the ELP tag, and make use of the reactivity of OPH to determine the success of the recovery in the end. The second part is to construct and express three enzymes respectively, then by making use of their specificity to each other, combine them into a huge enzyme complex. This enzyme complex is purified through the ELP tag and the three enzymes are recovered eventually.
摘要 iii
Abstract iv
致謝 v
總目錄 vi
表目錄 x
圖目錄 xi
縮寫表 xiv
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 研究內容 2
第二章 文獻回顧 5
2.1 蛋白質的純化方法 5
2.1.1 根據蛋白質溶解度不同而分離 5
2.1.2 根據蛋白質分子大小的差別而分離 5
2.1.3 根據配體特異性親和力而分離 6
2.2 類彈性蛋白(Elastin-like-polypeptide, ELP) 7
2.2.1 ELP之相變原理 8
2.2.2 ELP之純化方法 9
2.2.3 ELP標籤之選擇 10
2.2.4 ELP標籤的切除方法 11
2.3 外膜囊泡(Outer membrane vesicles, OMVs) 11
2.3.1 OMVs的結構 12
2.3.2 OMVs的應用 13
2.4 有機磷水解酶(Organophosphorus hydrolase, OPH) 13
2.5 纖維素水解酵素(Cellulase) 14
2.6 蛋白質交互作用 15
1. Perler, F.B., et al., Protein splicing elements: inteins and exteins--a definition of terms and recommended nomenclature. Nucleic Acids Research, 1994. 22(7): p. 1125-1127.
2. Xing, L., et al., Streamlined protein expression and purification using cleavable self-aggregating tags. Microb Cell Fact, 2011. 10: p. 42.
3. Duong-Ly, K.C. and S.B. Gabelli, Salting out of Proteins Using Ammonium Sulfate Precipitation. Methods in Enzymology, 2014. 541: p. 85-94.
4. Gaudin, C., et al., CelE, a Multidomain Cellulase from Clostridium cellulolyticum: a Key Enzyme in the Cellulosome? Journal of Bacteriology, 2000. 182(7): p. 1910-1915.
5. Coskun, O., Separation techniques: Chromatography. Northern Clinics of Istanbul, 2016. 3(2): p. 156-160.
6. Hassouneh, W., T. Christensen, and A. Chilkoti, Elastin-like polypeptides as a purification tag for recombinant proteins. Curr Protoc Protein Sci, 2010. Chapter 6: p. Unit 6 11.
7. Li, B. and V. Daggett, The molecular basis of the temperature- and pH-induced conformational transitions in elastin-based peptides. Biopolymers, 2003. 68(1): p. 121-129.
8. Smits, F.C., et al., Elastin-like polypeptide based nanoparticles: design rationale toward nanomedicine. Macromol Biosci, 2015. 15(1): p. 36-51.
9. Li, N.K., et al., Molecular description of the LCST behavior of an elastin-like polypeptide. Biomacromolecules, 2014. 15(10): p. 3522-30.
10. Liu, F., et al., Engineering a high-affinity scaffold for non-chromatographic protein purification via intein-mediated cleavage. Biotechnol Bioeng, 2012. 109(11): p. 2829-35.
11. Fong, B.A., W.Y. Wu, and D.W. Wood, Optimization of ELP-intein mediated protein purification by salt substitution. Protein Expr Purif, 2009. 66(2): p. 198-202.
12. Shi, C., Q. Meng, and D.W. Wood, A dual ELP-tagged split intein system for non-chromatographic recombinant protein purification. Appl Microbiol Biotechnol, 2013. 97(2): p. 829-35.
13. Tian, L. and S.S.M. Sun, A Cost-Effective ELP-Intein Coupling System for Recombinant Protein Purification from Plant Production Platform. PLoS ONE, 2011. 6(8): p. e24183.
14. Kulp, A. and M.J. Kuehn, Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol, 2010. 64: p. 163-84.
15. K.E.Bonnington, M.J.K., Protein selection and export via outer membrane vesicles. BBA-Mol Cell Res, 2014. 1843: p. 1612-1619.
16. McBroom, A.J., et al., Outer membrane vesicle production by Escherichia coli is independent of membrane instability. J Bacteriol, 2006. 188(15): p. 5385-92.
17. McBroom AJ, K.M., Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol Microbiol, 2007. 63: p. 545-548.
18. Deatherage, B.L., et al., Biogenesis of bacterial membrane vesicles. Mol Microbiol, 2009. 72(6): p. 1395-407.
19. Schwechheimer, C., C.J. Sullivan, and M.J. Kuehn, Envelope control of outer membrane vesicle production in Gram-negative bacteria. Biochemistry, 2013. 52(18): p. 3031-40.
20. Kobayashi H, U.K., Hirayama H, Horikoshi K, Novel toluene elimination system in a toluene-tolerant microorganism. J Bacteriol, 2000. 182: p. 6451-6455.
21. Amano, A., H. Takeuchi, and N. Furuta, Outer membrane vesicles function as offensive weapons in host-parasite interactions. Microbes Infect, 2010. 12(11): p. 791-8.
22. Kuehn MJ, K.N., Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev, 2005. 19: p. 2645-2655.
23. TJ, B., Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol, 1999. 181: p. 4725-4733.
24. Chutkan H, M.I., Manning A, Kuehn MJ, Quantitative and qualitative preparations of bacterial outer membrane vesicles. Methods MolBiol, 2013. 966(259-272).
25. Klimentova, J. and J. Stulik, Methods of isolation and purification of outer membrane vesicles from gram-negative bacteria. Microbiol Res, 2015. 170: p. 1-9.
26. M.M. Benning, M.J.K., M.F. Raushel, H.M. Holden, Three-Dimensional Structure of Phosphotriesterase An Enzyme Capable of Detoxifying Organophosphate Nerve Agents. Biochemistry, 1994. 33: p. 15001-15007.
27. G.A. Omburo, J.M.K., L.S. Mullins, F.M. Raushel, Characterisation of the zinc binding site of bacterial phosphotriesterase. J. Biol. Chem., 1992. 267: p. 13278-13283.
28. Richins RD, K.I., Mulchandani A, ChenW, Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nat Biotechnol, 1997. 15: p. 984-987.
29. Richins RD, K.I., Mulchandani A, ChenW, Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nat Biotechnol, 1997. 15: p. 984-987.
30. Shimazu M, M.A., Chen W, Simultaneous degradation of organophosphorus pesticides and p-nitrophenol by a genetically engineered Moraxella sp. with surface expressed organophosphorus hydrolase. Biotechnol Bioeng, 2001. 76: p. 318-324.
31. Shimazu M, N.A., Mulchandani A, Chen W, Cell surface display of OPH in Pseudomonas putida using an ice-nucleation protein anchor. Biotechnol Prog, 2003. 19: p. 1612-1614.
32. Takayama K, S.S., Kuroda K,Ueda M, Kitaguchi T, Tsuchiyama K, et al, Surface Display of Organophosphorus Hydrolase on Saccharomyces cerevisiae. Biotechnol Prog, 2006. 22: p. 939-943.
33. Bhat, M.K. and S. Bhat, Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances, 1997. 15(3): p. 583-620.
34. Béguin, P. and J.-P. Aubert, The biological degradation of cellulose. FEMS Microbiology Reviews, 1994. 13(1): p. 25-58.
35. Gusakov, A.V., E.G. Kondratyeva, and A.P. Sinitsyn, Comparison of two methods for assaying reducing sugars in the determination of carbohydrase activities. Int J Anal Chem, 2011. 2011: p. 283658.
36. Craig, S.J., F.C. Foong, and R. Nordon, Engineered proteins containing the cohesin and dockerin domains from Clostridium thermocellum provides a reversible, high affinity interaction for biotechnology applications. J Biotechnol, 2006. 121(2): p. 165-73.
37. Stahl, S.W., et al., Single-molecule dissection of the high-affinity cohesin-dockerin complex. Proc Natl Acad Sci U S A, 2012. 109(50): p. 20431-6.
38. Weng, Z., et al., Structure-function analysis of SH3 domains: SH3 binding specificity altered by single amino acid substitutions. Molecular and Cellular Biology, 1995. 15(10): p. 5627-5634.
39. van Bloois, E., et al., Decorating microbes: surface display of proteins on Escherichia coli. Trends Biotechnol, 2011. 29(2): p. 79-86.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top