|
1 Perry, M. L. & Fuller, T. F. A Historical Perspective of Fuel Cell Technology in the 20th Century. Journal of The Electrochemical Society 149, S59, doi:10.1149/1.1488651 (2002). 2 WHAT TYPES OF FUEL CELLS ARE THERE?, <http://www.chfca.ca/education-centre/how-fuel-cells-work/> (2014). 3 Tewari, A., Sambhy, V., Urquidi Macdonald, M. & Sen, A. Quantification of carbon dioxide poisoning in air breathing alkaline fuel cells. Journal of Power Sources 153, 1-10, doi:http://dx.doi.org/10.1016/j.jpowsour.2005.03.192 (2006). 4 Varcoe, J. R. & Slade, R. C. Prospects for alkaline anion‐exchange membranes in low temperature fuel cells. Fuel Cells 5, 187-200 (2005). 5 Al-Saleh, M. A., Gültekin, S., Al-Zakri, A. S. & Celiker, H. Effect of carbon dioxide on the performance of Ni/PTFE and Ag/PTFE electrodes in an alkaline fuel cell. Journal of Applied Electrochemistry 24, 575-580, doi:10.1007/bf00249861 (1994). 6 Thanh Ho, V. T., Pillai, K. C., Chou, H.-L., Pan, C.-J., Rick, J., Su, W.-N., Hwang, B.-J., Lee, J.-F., Sheu, H.-S. & Chuang, W.-T. Robust non-carbon Ti0.7Ru0.3O2 support with co-catalytic functionality for Pt: enhances catalytic activity and durability for fuel cells. Energy & Environmental Science 4, 4194, doi:10.1039/c1ee01522b (2011). 7 Hogarth, M. & Hards, G. Direct methanol fuel cells. Platinum Metals Review 40, 150-159 (1996). 8 Wang, C.-Y. in Mini-Micro Fuel Cells: Fundamentals and Application. 235-242, doi:10.1007/978-1-4020-8295-5 (Springer, 2008). 9 Li, Q., Aili, D., Hjuler, H. A. & Jensen, J. O. High temperature polymer electrolyte membrane fuel cells. (Springer, 2016). 10 Jacobson, D. PEM Fuel Cells., <http://www.physics.nist.gov/MajResFac/NIF/pemFuelCells.html> (2006). 11 Wang, Y., Chen, K. S., Mishler, J., Cho, S. C. & Adroher, X. C. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy 88, 981-1007, doi:10.1016/j.apenergy.2010.09.030 (2011). 12 Cheng, F. & Chen, J. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chemical Society Reviews 41, 2172-2192, doi:10.1039/C1CS15228A (2012). 13 Wang, Z.-L., Xu, D., Xu, J.-J. & Zhang, X.-B. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Chemical Society Reviews 43, 7746-7786, doi:10.1039/C3CS60248F (2014). 14 Ghosh, S. & Basu, R. N. Electrochemistry of Nanostructured Materials: Implementation in Electrocatalysis for Energy Conversion Applications. Journal of the Indian Institute of Science 96, 293-313 (2016). 15 Shapley, P. PEMFCs cathode reaction, <http://butane.chem.uiuc.edu/pshapley/GenChem2/C10/1.html> (2012). 16 Jones, R. H. & Thomas, G. J. Materials for the hydrogen economy. (CRC Press, 2007). 17 Wang, Y.-J., Wilkinson, D. P. & Zhang, J. Noncarbon Support Materials for Polymer Electrolyte Membrane Fuel Cell Electrocatalysts. Chemical Reviews 111, 7625-7651, doi:10.1021/cr100060r (2011). 18 Luo, Z., Li, D., Tang, H., Pan, M. & Ruan, R. Degradation behavior of membrane–electrode-assembly materials in 10-cell PEMFC stack. International journal of hydrogen energy 31, 1831-1837 (2006). 19 Meier, J. C., Galeano, C., Katsounaros, I., Topalov, A. A., Kostka, A., Schüth, F. & Mayrhofer, K. J. J. Degradation Mechanisms of Pt/C Fuel Cell Catalysts under Simulated Start–Stop Conditions. ACS Catalysis 2, 832-843, doi:10.1021/cs300024h (2012). 20 Mitsushima, S., Kawahara, S., Ota, K.-i. & Kamiya, N. Consumption rate of Pt under potential cycling. Journal of The Electrochemical Society 154, B153-B158 (2007). 21 Ball, S. C., Hudson, S. L., Leung, J. H., Russell, A. E., Thompsett, D. & Theobald, B. R. Mechanisms of activity loss in PtCo alloy systems. ECS Transactions 11, 1247-1257 (2007). 22 Zhang, S., Yuan, X.-Z., Hin, J. N. C., Wang, H., Friedrich, K. A. & Schulze, M. A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells. Journal of Power Sources 194, 588-600 (2009). 23 De Bruijn, F., Dam, V. & Janssen, G. Review: durability and degradation issues of PEM fuel cell components. Fuel cells 8, 3-22 (2008). 24 Peighambardoust, S. J., Rowshanzamir, S. & Amjadi, M. Review of the proton exchange membranes for fuel cell applications. International journal of hydrogen energy 35, 9349-9384 (2010). 25 Curtin, D. E., Lousenberg, R. D., Henry, T. J., Tangeman, P. C. & Tisack, M. E. Advanced materials for improved PEMFC performance and life. Journal of Power Sources 131, 41-48 (2004). 26 Healy, J., Hayden, C., Xie, T., Olson, K., Waldo, R., Brundage, M., Gasteiger, H. & Abbott, J. Aspects of the chemical degradation of PFSA ionomers used in PEM fuel cells. Fuel cells 5, 302-308 (2005). 27 Cindrella, L., Kannan, A., Lin, J., Saminathan, K., Ho, Y., Lin, C. & Wertz, J. Gas diffusion layer for proton exchange membrane fuel cells—A review. Journal of Power Sources 194, 146-160 (2009). 28 Stevens, D. & Dahn, J. Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells. Carbon 43, 179-188 (2005). 29 Cai, M., Ruthkosky, M. S., Merzougui, B., Swathirajan, S., Balogh, M. P. & Oh, S. H. Investigation of thermal and electrochemical degradation of fuel cell catalysts. Journal of Power Sources 160, 977-986 (2006). 30 Vince Contini, K. M., Fritz Eubanks, Jennifer Smith, Gabe Stout and Mike Jansen Battelle. 2012 Auto Fuel Cell System: Stack and System Cost Results. 17 (Department of Energy, 2013). 31 HYDROGEN DELIVERY, <https://energy.gov/eere/fuelcells/hydrogen-delivery> (2014). 32 Simbeck, Dale, and S. F. A. Pacific. "Biggest Challenge for the Hydrogen Economy Hydrogen Production & Infrastructure Costs." (2003). 33 Kendall, K. & Pollet, B. 4.12-Hydrogen and Fuel Cells in Transport. (2012). 34 HYDROGEN STORAGE, <https://energy.gov/eere/fuelcells/hydrogen-storage> (2015). 35 Erable, B., Féron, D. & Bergel, A. Microbial catalysis of the oxygen reduction reaction for microbial fuel cells: a review. ChemSusChem 5, 975-987 (2012). 36 Fuller, T., Cleghorn, S., Zhao, T., Haug, A., Lamy, C., Gasteiger, H., Ramani, V., Nguyen, T., Bock, C. & Ota, K. Proton Exchange Membrane Fuel Cells 7. (2007). 37 Nie, Y., Li, L. & Wei, Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem Soc Rev 44, 2168-2201, doi:10.1039/c4cs00484a (2015). 38 Hu, Y., Zhang, H., Wu, P., Zhang, H., Zhou, B. & Cai, C. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation. Phys Chem Chem Phys 13, 4083-4094, doi:10.1039/c0cp01998d (2011). 39 Bing Joe Hwang, S. M. S. K., Ching-Hsiang Chen, & Monalisa, M.-Y. C., Din-Goa Liu, and Jyh-Fu Lee. An Investigation of Structure-Catalytic Activity Relationship for Pt-Co/C Bimetallic Nanoparticles toward the Oxygen Reduction Reaction. J. Phys. Chem. C 111, 15267-15276 (2007). 40 Feng-Ju Lai, W.-N. S., Loka Subramanyam Sarma, Din-Goa Liu, Cheng-An Hsieh, Jyh-Fu Lee, and Bing-Joe Hwang. Chemical Dealloying Mechanism of Bimetallic Pt-Co Nanoparticles and Enhancement of Catalytic Reactivity Toward to Oxygen Reduction Reaction. Chem. Eur. J. 16, 4602-4611 (2010). 41 Zou, L., Fan, J., Zhou, Y., Wang, C., Li, J., Zou, Z. & Yang, H. Conversion of PtNi alloy from disordered to ordered for enhanced activity and durability in methanol-tolerant oxygen reduction reactions. Nano Research 8, 2777-2788, doi:10.1007/s12274-015-0784-0 (2015). 42 Cui, C., Gan, L., Heggen, M., Rudi, S. & Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat Mater 12, 765-771, doi:10.1038/nmat3668 (2013). 43 Fadlilatul Taufany, C.-J. P., Hung-Lung Chou, John Rick, Young-Siou Chen, Din-Goa Liu, Jyh-Fu Lee, Mau-Tsu Tang, and Bing-Joe Hwang. Relating Structural Aspects of Bimetallic Pt3Cr1/C Nanoparticles to Their Electrocatalytic Activity, Stability, and Selectivity in the Oxygen Reduction Reaction. Chem. Eur. J. 17, 10723-10734 (2011). 44 Li, Q., Wu, L., Wu, G., Su, D., Lv, H., Zhang, S., Zhu, W., Casimir, A., Zhu, H., Mendoza-Garcia, A. & Sun, S. New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid. Nano Lett 15, 2468-2473, doi:10.1021/acs.nanolett.5b00320 (2015). 45 Di-Yan Wang, H.-L. C., Ching-Che Cheng, Yu-Yan Wu, Chin-Ming Tsai, Heng-Yi Lin, Yuh-Lin Wang, Bing Joe Hwang, and Chia-Chun Chen. FePt Nanodendrites with High-index Facets as Active Electrocatalysts for Oxygen Reduction Reaction. Nano Energy 11, 631-639 (2015). 46 Chen, Z., Waje, M., Li, W. & Yan, Y. Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew Chem Int Ed Engl 46, 4060-4063, doi:10.1002/anie.200700894 (2007). 47 Fadlilatul Taufany, C.-J. P., John Rick, Hung-Lung Chou, Mon-Che Tsai, Bing-Joe Hwang, Din-Goa Liu, Jyh-Fu Lee, Mau-Tsu Tang, Yao-Chang Lee, and Ching-Iue Chen. Kinetically Controlled Autocatalytic Chemical Process for Bulk Production of Bimetallic CoreShell Structured Nanoparticles. ACS Nano 5, 9370 (2011). 48 Van Thi Thanh Ho, C.-J. P., John Rick, Wei-Nien Su, and Bing-Joe Hwang. Nanostructured Ti(0.7)Mo(0.3)O2 support enhances electron transfer to Pt: high-performance catalyst for oxygen reduction reaction. J Am Chem Soc 133, 11716-11724, doi:10.1021/ja2039562 (2011). 49 Akalework, N. G., Pan, C.-J., Su, W.-N., Rick, J., Tsai, M.-C., Lee, J.-F., Lin, J.-M., Tsai, L.-D. & Hwang, B.-J. Ultrathin TiO2-coated MWCNTs with excellent conductivity and SMSI nature as Pt catalyst support for oxygen reduction reaction in PEMFCs. Journal of Materials Chemistry 22, 20977, doi:10.1039/c2jm34361d (2012). 50 Kumar, A. & Ramani, V. Strong Metal–Support Interactions Enhance the Activity and Durability of Platinum Supported on Tantalum-Modified Titanium Dioxide Electrocatalysts. ACS Catalysis 4, 1516-1525, doi:10.1021/cs500116h (2014). 51 Sun, S., Zhang, G., Geng, D., Chen, Y., Li, R., Cai, M. & Sun, X. A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: multiarmed starlike nanowire single crystal. Angew Chem Int Ed Engl 50, 422-426, doi:10.1002/anie.201004631 (2011). 52 Zhang, G., Sun, S., Cai, M., Zhang, Y., Li, R. & Sun, X. Porous dendritic platinum nanotubes with extremely high activity and stability for oxygen reduction reaction. Sci Rep 3, 1526, doi:10.1038/srep01526 (2013). 53 Tauster, S. J., Fung, S. C. & Garten, R. L. Strong Metal-Support Interactions. Group 8 Noble Metals Supported on Ti02. J. Am. Chem. Soc. 100, 170-175 (1978). 54 Sá, J., Bernardi, J. & Anderson, J. A. Imaging of low temperature induced SMSI on Pd/TiO2 catalysts. Catalysis Letters 114, 91-95, doi:10.1007/s10562-007-9049-1 (2007). 55 O'Shea, V. A., Galvan, M. C., Prats, A. E., Campos-Martin, J. M. & Fierro, J. L. Direct evidence of the SMSI decoration effect: the case of Co/TiO2 catalyst. Chem Commun (Camb) 47, 7131-7133, doi:10.1039/c1cc10318k (2011). 56 Li, Y., Xu, B., Fan, Y., Feng, N., Qiu, A., He, J. M. J., Yang, H. & Chen, Y. The effect of titania polymorph on the strong metal-support interaction of Pd/TiO2 catalysts and their application in the liquid phase selective hydrogenation of long chain alkadienes. Journal of Molecular Catalysis A: Chemical 216, 107-114, doi:10.1016/j.molcata.2004.02.007 (2004). 57 Sa, J., Berger, T., Fottinger, K., Riss, A., Anderson, J. & Vinek, H. Can TiO2 promote the reduction of nitrates in water? Journal of Catalysis 234, 282-291, doi:10.1016/j.jcat.2005.06.015 (2005). 58 Li, Y., Fan, Y., Yang, H., Xu, B., Feng, L., Yang, M. & Chen, Y. Strong metal-support interaction and catalytic properties of anatase and rutile supported palladium catalyst Pd/TiO2. Chemical Physics Letters 372, 160-165, doi:10.1016/s0009-2614(03)00383-x (2003). 59 Fu, Q., Wagner, T., Olliges, S. & Carstanjen, H.-D. Metal-Oxide Interfacial Reactions: Encapsulation of Pd on TiO2 (110). J. Phys. Chem. B 109, 944-951 (2005). 60 Ignaszak, A., Song, C., Zhu, W., Wang, Y.-J., Zhang, J., Bauer, A., Baker, R., Neburchilov, V., Ye, S. & Campbell, S. Carbon–Nb0.07Ti0.93O2 composite supported Pt–Pd electrocatalysts for PEM fuel cell oxygen reduction reaction. Electrochimica Acta 75, 220-228, doi:10.1016/j.electacta.2012.04.111 (2012). 61 Du, Q., Wu, J. & Yang, H. Pt@Nb-TiO2Catalyst Membranes Fabricated by Electrospinning and Atomic Layer Deposition. ACS Catalysis 4, 144-151, doi:10.1021/cs400944p (2014). 62 Tsai, M.-C., Nguyen, T.-T., Akalework, N. G., Pan, C.-J., Rick, J., Liao, Y.-F., Su, W.-N. & Hwang, B.-J. Interplay between Molybdenum Dopant and Oxygen Vacancies in a TiO2Support Enhances the Oxygen Reduction Reaction. ACS Catalysis, 6551-6559, doi:10.1021/acscatal.6b00600 (2016). 63 Subban, C. V., Zhou, Q., Hu, A., Moylan, T. E., Wagner, F. T. & DiSalvo, F. J. Sol-Gel Synthesis, Electrochemical Characterization, and Stability Testing of Ti0.7W0.3O2 Nanoparticles for Catalyst Support Applications in Proton-Exchange Membrane Fuel Cells. J. Am. Chem. Soc. 132, 17531-17536 (2010). 64 Van Thi Thanh Ho, K. C. P., Hung-Lung Chou, Chun-Jern Pan, John Rick, Wei-Nien Su, Bing-Joe Hwang, Jyh-Fu Lee, Hwo-Shuenn Sheu and Wei-Tsung Chuang. Robust non-carbon Ti0.7Ru0.3O2 support with co-catalytic functionality for Pt: enhances catalytic activity and durability for fuel cells. Energy & Environmental Science 4, 4194, doi:10.1039/c1ee01522b (2011). 65 Yan, H., Wang, X., Yao, M. & Yao, X. Band structure design of semiconductors for enhanced photocatalytic activity: The case of TiO2. Progress in Natural Science: Materials International 23, 402-407, doi:10.1016/j.pnsc.2013.06.002 (2013). 66 Samsudin, E. M. & Abd Hamid, S. B. Effect of band gap engineering in anionic-doped TiO 2 photocatalyst. Applied Surface Science 391, 326-336, doi:10.1016/j.apsusc.2016.07.007 (2017). 67 Gong, J., Yang, C., Zhang, J. & Pu, W. Origin of photocatalytic activity of W/N-codoped TiO2: H2 production and DFT calculation with GGA+U. Applied Catalysis B: Environmental 152-153, 73-81, doi:10.1016/j.apcatb.2014.01.028 (2014). 68 Hwang, B. J., Chen, C.-H., Sarma, L. S., Chen, J.-M., Wang, G.-R., Tang, M.-T., Liu, D.-G. & Lee, J.-F. Probing the Formation Mechanism and Chemical States of Carbon-Supported Pt-Ru Nanoparticles by in Situ X-ray Absorption Spectroscopy. J. Phys. Chem. B 110, 6475-6482 (2006). 69 van der Vliet, D., Strmcnik, D. S., Wang, C., Stamenkovic, V. R., Markovic, N. M. & Koper, M. T. M. On the importance of correcting for the uncompensated Ohmic resistance in model experiments of the Oxygen Reduction Reaction. Journal of Electroanalytical Chemistry 647, 29-34, doi:10.1016/j.jelechem.2010.05.016 (2010). 70 Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science 6, 15-50, doi:10.1016/0927-0256(96)00008-0 (1996). 71 Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B 54, 11169-11186 (1996). 72 Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Physical Review B 47, 558-561 (1993). 73 Alexeev, O. S., Chin, S. Y., Engelhard, M. H., Ortiz-Soto, L. & Amiridis, M. D. Effects of Reduction Temperature and Metal-Support Interactions on the Catalytic Activity of Pt/γ-Al2O3 and Pt/TiO2 for the Oxidation of CO in the Presence and Absence of H2. J. Phys. Chem. B 109, 23430-23443 (2005). 74 Silvestre-Albero, J., Sepu´lveda-Escribano, A., Rodır´guez-Reinoso, F. & Anderson, J. A. Infrared study of CO and 2-butenal co-adsorption on Zn modified Pt/CeO2-SiO2 catalysts. Physical Chemistry Chemical Physics 5, 208-216, doi:10.1039/b209446k (2003). 75 Fernhndez, A., ConzBlez-Elipe, A. R., Caballero, A. & Munuera, G. Low-Temperature Photoassisted Generation of a Strong Metal-Support Interaction in a Rh/TiO2 Catalyst. J. Phys. Chem. 97, 3350-3354 (1993). 76 Banham, D., Feng, F., Pei, K., Ye, S. & Birss, V. Effect of carbon support nanostructure on the oxygen reduction activity of Pt/C catalysts. Journal of Materials Chemistry A 1, 2812, doi:10.1039/c2ta00868h (2013). 77 Gu, J., Lan, G., Jiang, Y., Xu, Y., Zhu, W., Jin, C. & Zhang, Y. Shaped Pt-Ni nanocrystals with an ultrathin Pt-enriched shell derived from one-pot hydrothermal synthesis as active electrocatalysts for oxygen reduction. Nano Research 8, 1480-1496, doi:10.1007/s12274-014-0632-7 (2014). 78 Yun-Chih Lin, H.-L. C., Mon-Che Tsai, Bing-Joe Hwang, Loka Subramanyam Sarma, Yao-Chang Lee, and Ching-Iue Chen. A combined experimental and theoretical investigation of nano-sized effects of Pt catalyst on their underlying methanol electro-oxidation activity. J. Phys. Chem. C 113, 9197-9205 (2009). 79 Genorio, B., Strmcnik, D., Subbaraman, R., Tripkovic, D., Karapetrov, G., Stamenkovic, V. R., Pejovnik, S. & Markovic, N. M. Selective catalysts for the hydrogen oxidation and oxygen reduction reactions by patterning of platinum with calix[4]arene molecules. Nat Mater 9, 998-1003, doi:10.1038/nmat2883 (2010). 80 Cheng, K., Kou, Z., Zhang, J., Jiang, M., Wu, H., Hu, L., Yang, X., Pan, M. & Mu, S. Ultrathin carbon layer stabilized metal catalysts towards oxygen reduction. J. Mater. Chem. A 3, 14007-14014, doi:10.1039/c5ta02386f (2015). 81 He, D., Cheng, K., Peng, T., Sun, X., Pan, M. & Mu, S. Bifunctional effect of reduced graphene oxides to support active metal nanoparticles for oxygen reduction reaction and stability. Journal of Materials Chemistry 22, 21298, doi:10.1039/c2jm34290a (2012). 82 He, D., Jiang, Y., Lv, H., Pan, M. & Mu, S. Nitrogen-doped reduced graphene oxide supports for noble metal catalysts with greatly enhanced activity and stability. Applied Catalysis B: Environmental 132-133, 379-388, doi:10.1016/j.apcatb.2012.12.005 (2013). 83 He, D., Zeng, C., Xu, C., Cheng, N., Li, H., Mu, S. & Pan, M. Polyaniline-functionalized carbon nanotube supported platinum catalysts. Langmuir 27, 5582-5588, doi:10.1021/la2003589 (2011). 84 Senevirathne, K., Neburchilov, V., Alzate, V., Baker, R., Neagu, R., Zhang, J., Campbell, S. & Ye, S. Nb-doped TiO2/carbon composite supports synthesized by ultrasonic spray pyrolysis for proton exchange membrane (PEM) fuel cell catalysts. Journal of Power Sources 220, 1-9, doi:10.1016/j.jpowsour.2012.07.080 (2012). 85 Wang, Y. J., Wilkinson, D. P. & Zhang, J. Synthesis of conductive rutile-phased Nb0.06Ti0.94O2 and its supported Pt electrocatalysts (Pt/Nb0.06Ti0.94O2) for the oxygen reduction reaction. Dalton Trans 41, 1187-1194, doi:10.1039/c1dt11711d (2012). 86 Elezović, N. R., Babić, B. M., Gajić-Krstajić, L., Radmilović, V., Krstajić, N. V. & Vračar, L. J. Synthesis, characterization and electrocatalytical behavior of Nb–TiO2/Pt nanocatalyst for oxygen reduction reaction. Journal of Power Sources 195, 3961-3968, doi:10.1016/j.jpowsour.2010.01.035 (2010). 87 Lv, H. & Mu, S. Nano-ceramic support materials for low temperature fuel cell catalysts. Nanoscale 6, 5063-5074, doi:10.1039/c4nr00402g (2014). 88 Kim, K. W., Kim, S. M., Choi, S., Kim, J. & Lee, I. S. Electroless Pt Deposition on Mn3O4 Nanoparticles via the Galvanic Replacement Process: Electrocatalytic Nanocomposite with Enhanced Performance for Oxygen Reduction Reaction. ACS Nano 6, 5122-5129 (2012). 89 Liu, Y. & Mustain, W. E. High stability, high activity Pt/ITO oxygen reduction electrocatalysts. J Am Chem Soc 135, 530-533, doi:10.1021/ja307635r (2013). 90 Jiang, Z.-Z., Wang, Z.-B., Chu, Y.-Y., Gu, D.-M. & Yin, G.-P. Ultrahigh stable carbon riveted Pt/TiO2–C catalyst prepared by in situ carbonized glucose for proton exchange membrane fuel cell. Energy Environ. Sci. 4, 728-735, doi:10.1039/c0ee00475h (2011). 91 Ho, W., Yu, J. C. & Lee, S. Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. Chem Commun (Camb), 1115-1117, doi:10.1039/b515513d (2006). 92 Spadavecchia, F., Cappelletti, G., Ardizzone, S., Ceotto, M. & Falciola, L. Electronic Structure of Pure and N-Doped TiO2Nanocrystals by Electrochemical Experiments and First Principles Calculations. The Journal of Physical Chemistry C 115, 6381-6391, doi:10.1021/jp2003968 (2011). 93 Wang, J., Tafen, D. N., Lewis, J. P., Hong, Z., Manivannan, A., Zhi, M., Li, M. & Wu, N. Origin of Photocatalytic Activity of Nitrogen-Doped TiO2 Nanobelts. J. Am. Chem. Soc. 131, 12290-12297 (2009). 94 Umare, S. S., Charanpahari, A. & Sasikala, R. Enhanced visible light photocatalytic activity of Ga, N and S codoped TiO2 for degradation of azo dye. Materials Chemistry and Physics 140, 529-534, doi:10.1016/j.matchemphys.2013.04.001 (2013). 95 Zhang, M., Wu, J., Lu, D. & Yang, J. Enhanced Visible Light Photocatalytic Activity for TiO2 Nanotube Array Films by Codoping with Tungsten and Nitrogen. International Journal of Photoenergy 2013, 1-8, doi:10.1155/2013/471674 (2013). 96 Díaz-Reyes, J., Dorantes-García, V., Pérez-Benítez, A. & Balderas-López, J. A. Obtaining of films of tungsten trioxide (WO3) by resistive heating of a tungsten filament. Superficies y Vacío 21, 12-17 (2008). 97 Yang, X., Dai, W., Guo, C., Chen, H., Cao, Y., Li, H., He, H. & Fan, K. Synthesis of novel core-shell structured WO3/TiO2 spheroids and its application in the catalytic oxidation of cyclopentene to glutaraldehyde by aqueous H2O2. Journal of Catalysis 234, 438-450, doi:10.1016/j.jcat.2005.06.035 (2005). 98 Chen, D.-m., Xu, G., Miao, L., Chen, L.-h., Nakao, S. & Jin, P. W-doped anatase TiO2 transparent conductive oxide films: Theory and experiment. Journal of Applied Physics 107, 063707, doi:10.1063/1.3326940 (2010). 99 Li, Y., Wu, W., Dai, P., Zhang, L., Sun, Z., Li, G., Wu, M., Chen, X. & Chen, C. WO3 and Ag nanoparticle co-sensitized TiO2 nanowires: preparation and the enhancement of photocatalytic activity. RSC Advances 4, 23831, doi:10.1039/c4ra02161d (2014). 100 Khan, M., Cao, W., Chen, N., Usman, Z., Khan, D. F., Toufiq, A. M. & Khaskheli, M. A. Influence of tungsten doping concentration on the electronic and optical properties of anatase TiO2. Current Applied Physics 13, 1376-1382, doi:10.1016/j.cap.2013.04.023 (2013). 101 Riboni, F., Bettini, L. G., Bahnemann, D. W. & Selli, E. WO3–TiO2 vs. TiO2 photocatalysts: effect of the W precursor and amount on the photocatalytic activity of mixed oxides. Catalysis Today 209, 28-34, doi:10.1016/j.cattod.2013.01.008 (2013). 102 Sathish, M., Viswanathan, B., Viswanath, R. P. & Gopinath, C. S. Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2 Nanocatalyst. Chem. Mater. 17, 6349-6353 (2005). 103 Chisaka, M., Ishihara, A., Suito, K., Ota, K.-i. & Muramoto, H. Oxygen reduction reaction activity of nitrogen-doped titanium oxide in acid media. Electrochimica Acta 88, 697-707, doi:10.1016/j.electacta.2012.10.137 (2013). 104 Thind, S. S., Wu, G. & Chen, A. Synthesis of mesoporous nitrogen–tungsten co-doped TiO2 photocatalysts with high visible light activity. Applied Catalysis B: Environmental 111-112, 38-45, doi:10.1016/j.apcatb.2011.09.016 (2012). 105 Carmo, M., dos Santos, A. R., Poco, J. G. R. & Linardi, M. Physical and electrochemical evaluation of commercial carbon black as electrocatalysts supports for DMFC applications. Journal of Power Sources 173, 860-866, doi:10.1016/j.jpowsour.2007.08.032 (2007). 106 Branko N. Popov, D. L. H., David Peterson, Thomas Benjamin. Development of Ultra-Low Platinum Alloy Cathode Catalysts for PEM Fuel Cells. DOE Hydrogen and Fuel Cells Program (2012). 107 Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B 41, 7892-7895 (1990). 108 Blöchl, P. E. Projector augmented-wave method. Physical Review B 50, 17953-17979 (1994). 109 Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. & Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics 64, 1045-1097 (1992). 110 Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 59, 1758-1775 (1999). 111 Hu, P., King, D. A., Crampin, S., Lee, M. H. & Payne, M. C. Gradient corrections in density functional theory calculations for surfaces: Co on Pd{110}. Chemical Physics Letters 230, 501-506, doi:10.1016/0009-2614(94)01184-2 (1994). 112 Perdew, J. P. in Electronic Structure in Solids '91 (Akademie Verlag:Berlin, 1991). 113 Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J. & Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B 46, 6671-6687 (1992). 114 Bader, R. F. W. Atoms in Molecules: A Quantum Theory. (Oxford, 1990). 115 Huang, K., Sasaki, K., Adzic, R. R. & Xing, Y. Increasing Pt oxygen reduction reaction activity and durability with a carbon-doped TiO2 nanocoating catalyst support. Journal of Materials Chemistry 22, 16824, doi:10.1039/c2jm32234j (2012). 116 Song, H., Jeong, T. G., Moon, Y. H., Chun, H. H., Chung, K. Y., Kim, H. S., Cho, B. W. & Kim, Y. T. Stabilization of oxygen-deficient structure for conducting Li4Ti5O12-delta by molybdenum doping in a reducing atmosphere. Sci Rep 4, 4350, doi:10.1038/srep04350 (2014). 117 Kim, J.-H., Kwon, G., Lim, H., Zhu, C., You, H. & Kim, Y.-T. Effects of transition metal doping in Pt/M-TiO 2 (M= V, Cr, and Nb) on oxygen reduction reaction activity. Journal of Power Sources 320, 188-195 (2016). 118 Mayrhofer, K. J. J., Strmcnik, D., Blizanac, B. B., Stamenkovic, V., Arenz, M. & Markovic, N. M. Measurement of oxygen reduction activities via the rotating disc electrode method: From Pt model surfaces to carbon-supported high surface area catalysts. Electrochimica Acta 53, 3181-3188, doi:http://doi.org/10.1016/j.electacta.2007.11.057 (2008). 119 Hodnik, N., Baldizzone, C., Cherevko, S., Zeradjanin, A. & Mayrhofer, K. J. The effect of the voltage scan rate on the determination of the oxygen reduction activity of Pt/C fuel cell catalyst. Electrocatalysis 6, 1-5 (2015). 120 Omura, J., Yano, H., Tryk, D., Watanabe, M. & Uchida, H. Electrochemical Quartz Crystal Microbalance Analysis of the Oxygen Reduction Reaction on Pt-Based Electrodes. Part 2: Adsorption of Oxygen Species and ClO4–Anions on Pt and Pt–Co Alloy in HClO4 Solutions. Langmuir 30, 432-439 (2014). 121 Kobayashi, S., Wakisaka, M., Tryk, D. A., Iiyama, A. & Uchida, H. in Meeting Abstracts. 2638-2638 (The Electrochemical Society). 122 Darzi, S. J., Mahjoub, A. & Sarfi, S. Visible-light-active nitrogen doped TiO2 nanoparticles prepared by sol–gel acid catalyzed reaction. Iran. J. Mater. Sci. Eng 9, 17-23 (2012). 123 Couselo, N., García Einschlag, F. S., Candal, R. J. & Jobbágy, M. Tungsten-doped TiO2 vs pure TiO2 photocatalysts: effects on photobleaching kinetics and mechanism. The Journal of Physical Chemistry C 112, 1094-1100 (2008). 124 Neville, E. M., Mattle, M. J., Loughrey, D., Rajesh, B., Rahman, M., MacElroy, J., Sullivan, J. A. & Thampi, R. Carbon-doped TiO2 and carbon, tungsten-codoped TiO2 through sol-gel processes in the presence of melamine borate: Reflections through photocatalysis. (2012). 125 Le, T. S., Ngo, Q. B., Nguyen, V. D., Nguyen, H. C., Dao, T. H., Tran, X. T., Kabachkov, E. & Balikhin, I. Photocatalytic equipment with nitrogen-doped titanium dioxide for air cleaning and disinfecting. Advances in Natural Sciences: Nanoscience and Nanotechnology 5, 015017 (2014). 126 Macías-Sánchez, J., Hinojosa-Reyes, L., Caballero-Quintero, A., De La Cruz, W., Ruiz-Ruiz, E., Hernández-Ramírez, A. & Guzmán-Mar, J. Synthesis of nitrogen-doped ZnO by sol–gel method: characterization and its application on visible photocatalytic degradation of 2, 4-D and picloram herbicides. Photochemical & Photobiological Sciences 14, 536-542 (2015).
|