|
1. L. Carrette, K.F., and U. Stimming, Fuel cells–fundamentals and applications. 2001. Fuel cells, vol. 1: p. 5-39. 2. 黃鎮江, 燃料電池. 全華科技圖書出版, 2005. 3. Carrette, L., K. Friedrich, and U. Stimming, Fuel cells–fundamentals and applications. Fuel cells, 2001. 1(1): p. 5-39. 4. Carrette, L., K.A. Friedrich, and U. Stimming, Fuel cells: Principles, types, fuels, and applications. ChemPhysChem, 2000. 1(4): p. 163-193. 5. Ohyama, J., Size Specifically High Activity of Ru Nanoparticles for Hydrogen Oxidation Reaction in Alkaline Electrolyte. Journal of the American Chemical Society, 2013. 135(21): p. 8016-8021. 6. 毛鈺翔, Study on Highly Active Pt-free NiRu Electrocatalyst for Alkaline Hydrogen Oxidation and Evolution Reactions. 台灣科技大學化學工程學系學位論文, 2017. 7. Durst, J., (Invited) hydrogen oxidation and evolution reaction (HOR/HER) on Pt electrodes in acid vs. alkaline electrolytes: Mechanism, activity and particle size effects. ECS Transactions, 2014. 64(3): p. 1069-1080. 8. Sheng, W., Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nature communications, 2015. 6. 9. Strmcnik, D., Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nature Chemistry, 2013. 5(4): p. 300-306. 10. Wang, Y., Pt–Ru catalyzed hydrogen oxidation in alkaline media: Oxophilic effect or electronic effect? Energy & Environmental Science, 2015. 8(1): p. 177-181. 11. Liao, J., Carbon supported IrM (M= Fe, Ni, Co) alloy nanoparticles for the catalysis of hydrogen oxidation in acidic and alkaline medium. Chinese Journal of Catalysis, 2016. 37(7): p. 1142-1148. 12. St. John, S., Ruthenium-Alloy Electrocatalysts with Tunable Hydrogen Oxidation Kinetics in Alkaline Electrolyte. The Journal of Physical Chemistry C, 2015. 119(24): p. 13481-13487. 13. SatoshiMotoo, M.M.u., Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol. ELSEVIER, 1987. 229(1-2): p. 395-406. 14. Feng-Ju Lai, B.-J.H., Structural Characterization of Bimetallic Nanoparticles and Their Applications in Direct Methanol Fuel Cells. 2009. 15. Gong, M. An Advanced Ni–Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation. Journal of the American Chemical Society, 2013. 135(23): p. 8452-8455. 16. Clare L. Green, A.K., Determination of the Platinum and Ruthenium Surface Areas in Platinum-Ruthenium Alloy Electrocatalysts by Underpotential Deposition of Copper. I. Unsupported Catalysts. ACS Catalysis, 2002. 106: p. 1036-1047. 17. Ngo, T.T., T.L. Yu, and H.L. Lin, Influence of the composition of isopropyl alcohol/water mixture solvents in catalyst ink solutions on proton exchange membrane fuel cell performance. Journal of Power Sources, 2013. 225: p. 293-303. 18. Tran, T.D. and S.H. Langer, Electrochemical measurement of platinum surface areas on particulate conductive supports. Analytical Chemistry, 1993. 65(13): p. 1805-1807. 19. H. Inoue, J.W., K. Sasaki, and R. Adzic, Electrocatalysis of H 2 oxidation on Ru (0001) and Ru (10-10) single crystal surfaces. Journal of Electroanalytical Chemistry, 2003. 554: p. 77-85. 20. Grimmer, C., Carbon Supported Ruthenium as Anode Catalyst for Alkaline Direct Borohydride Fuel Cells. The Journal of Physical Chemistry C, 2015. 119(42): p. 23839-23844. 21. Wang, Y., Pt–Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect? Energy Environ. Sci., 2015. 8(1): p. 177-181. 22. Zheng, J., Correlating Hydrogen Oxidation/Evolution Reaction Activity with the Minority Weak Hydrogen-Binding Sites on Ir/C Catalysts. ACS Catalysis, 2015. 5(7): p. 4449-4455. 23. Tzorbatzoglou, F., A. Brouzgou, and P. Tsiakaras, Electrocatalytic activity of Vulcan-XC-72 supported Pd, Rh and PdxRhy toward HOR and ORR. Applied Catalysis B: Environmental, 2015. 174: p. 203-211. 24. Scofield, M.E., Role of Chemical Composition in the Enhanced Catalytic Activity of Pt-Based Alloyed Ultrathin Nanowires for the Hydrogen Oxidation Reaction under Alkaline Conditions. ACS Catalysis, 2016. 6: p. 3895-3908. 25. Xie, J., Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. Journal of the American Chemical Society, 2013. 135(47): p. 17881-17888. 26. Sheng, W., Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy & Environmental Science, 2013. 6(5): p. 1509-1512.
|