|
[1] J.R. Rostrup-Nielsen, Catalytic steam reforming, in: Catalysis, Springer, 1984, pp. 1-117. [2] T. Hou, S. Zhang, Y. Chen, D. Wang, W. Cai, Hydrogen production from ethanol reforming: Catalysts and reaction mechanism, Renewable and Sustainable Energy Reviews, 44 (2015) 132-148. [3] . [4] A. Bshish, Z. Yaakob, B. Narayanan, R. Ramakrishnan, A. Ebshish, Steam-reforming of ethanol for hydrogen production, Chemical Papers, 65 (2011). [5] D.K. Liguras, D.I. Kondarides, X.E. Verykios, Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts, Applied Catalysis B: Environmental, 43 (2003) 345-354. [6] C. Rioche, S. Kulkarni, F.C. Meunier, J.P. Breen, R. Burch, Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts, Applied Catalysis B: Environmental, 61 (2005) 130-139. [7] A. Basagiannis, X. Verykios, Reforming reactions of acetic acid on nickel catalysts over a wide temperature range, Applied Catalysis A: General, 308 (2006) 182-193. [8] J.F. Da Costa-Serra, R. Guil-López, A. Chica, Co/ZnO and Ni/ZnO catalysts for hydrogen production by bioethanol steam reforming. Influence of ZnO support morphology on the catalytic properties of Co and Ni active phases, International Journal of Hydrogen Energy, 35 (2010) 6709-6716. [9] A.E. Galetti, M.F. Gomez, L.A. Arrua, M.C. Abello, Ethanol steam reforming over ni/znal 2 o 4-ceo 2. influence of calcination atmosphere and nature of catalytic precursor, Applied Catalysis A: General, 408 (2011) 78-86. [10] J.-Y. Liu, C.-C. Lee, C.-H. Wang, C.-T. Yeh, C.-B. Wang, Application of nickel–lanthanum composite oxide on the steam reforming of ethanol to produce hydrogen, International Journal of Hydrogen Energy, 35 (2010) 4069-4075. [11] A. Machocki, A. Denis, W. Grzegorczyk, W. Gac, Nano- and micro-powder of zirconia and ceria-supported cobalt catalysts for the steam reforming of bio-ethanol, Applied Surface Science, 256 (2010) 5551-5558. [12] F. Frusteri, S. Freni, L. Spadaro, V. Chiodo, G. Bonura, S. Donato, S. Cavallaro, H 2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd, Rh, Ni and Co catalysts, Catalysis Communications, 5 (2004) 611-615. [13] L. Zhao, T. Han, H. Wang, L. Zhang, Y. Liu, Ni-Co alloy catalyst from LaNi 1−x Co x O 3 perovskite supported on zirconia for steam reforming of ethanol, Applied Catalysis B: Environmental, 187 (2016) 19-29. [14] X. Zhao, G. Lu, Modulating and controlling active species dispersion over Ni–Co bimetallic catalysts for enhancement of hydrogen production of ethanol steam reforming, International Journal of Hydrogen Energy, 41 (2016) 3349-3362. [15] A.N. Fatsikostas, X.E. Verykios, Reaction network of steam reforming of ethanol over Ni-based catalysts, Journal of Catalysis, 225 (2004) 439-452. [16] A.C. Furtado, C.G. Alonso, M.P. Cantão, N.R.C. Fernandes-Machado, Bimetallic catalysts performance during ethanol steam reforming: Influence of support materials, International Journal of Hydrogen Energy, 34 (2009) 7189-7196. [17] Y. Matsumura, T. Nakamori, Steam reforming of methane over nickel catalysts at low reaction temperature, Applied Catalysis A: General, 258 (2004) 107-114. [18] Yue Li1, Qi Fu, Maria Flytzani-Stephanopoulos∗Applied Catalysis B: Environmental 27 (2000) 179–191. [19] S. Cavallaro, S. Freni, Ethanol steam reforming in a molten carbonate fuel cell. A preliminary kinetic investigation, International Journal of Hydrogen Energy, 21 (1996) 465-469. [20] P. Carninci, T. Kasukawa, S. Katayama, J. Gough, M. Frith, N. Maeda, R. Oyama, T. Ravasi, B. Lenhard, C. Wells, The transcriptional landscape of the mammalian genome, Science, 309 (2005) 1559-1563. [21] F. Marino, M. Boveri, G. Baronetti, M. Laborde, Hydrogen production from steam reforming of bioethanol using Cu/Ni/K/γ-Al 2 O 3 catalysts. Effect of Ni, International Journal of Hydrogen Energy, 26 (2001) 665-668. [22] L.C. Chen, H. Cheng, C.W. Chiang, S.D. Lin, Sustainable hydrogen production by ethanol steam reforming using a partially reduced copper-nickel oxide catalyst, ChemSusChem, 8 (2015) 1787-1793. [23] L.-C. Chen, S.D. Lin, Effects of the pretreatment of CuNi/SiO2 on ethanol steam reforming: Influence of bimetal morphology, Applied Catalysis B: Environmental, 148-149 (2014) 509-519. [24] L.-C. Chen, S.D. Lin, The ethanol steam reforming over Cu-Ni/SiO2 catalysts: Effect of Cu/Ni ratio, Applied Catalysis B: Environmental, 106 (2011) 639-649. [25] 江致威, 銅鎳觸媒應用於中溫甲烷蒸汽重組反應之研究, in: 化學工程系, 國立臺灣科技大學, 台北市, 2014, pp. 98. [26] D. Han, X. Jing, J. Wang, P. Yang, D. Song, J. Liu, Porous lanthanum doped NiO microspheres for supercapacitor application, Journal of Electroanalytical Chemistry, 682 (2012) 37-44. [27] J.A. Calles, A. Carrero, A.J. Vizcaíno, Ce and La modification of mesoporous Cu–Ni/SBA-15 catalysts for hydrogen production through ethanol steam reforming, Microporous and Mesoporous Materials, 119 (2009) 200-207. [28] M. Sánchez-Sánchez, R. Navarro, J. Fierro, Ethanol steam reforming over Ni/MxOy–Al2O3 (M= Ce, La, Zr and Mg) catalysts: influence of support on the hydrogen production, International Journal of Hydrogen Energy, 32 (2007) 1462-1471. [29] Q. Zhou, D. Zhou, Y. Wu, T. Wu, Oxidative dehydrogenation of ethane over RE-NiO (RE=La, Nd, Sm, Gd) catalysts, Journal of Rare Earths, 31 (2013) 669-673. [30] T. Zhang, J. Ma, Y. Leng, S. Chan, P. Hing, J. Kilner, Effect of transition metal oxides on densification and electrical properties of Si-containing Ce 0.8 Gd 0.2 O 2− δ ceramics, Solid State Ionics, 168 (2004) 187-195. [31] J. Singh, A. Roychoudhury, M. Srivastava, P.R. Solanki, D.W. Lee, S.H. Lee, B.D. Malhotra, A highly efficient rare earth metal oxide nanorods based platform for aflatoxin detection, Journal of Materials Chemistry B, 1 (2013) 4493. [32] A. Boreave, H. Tan, V. Roche, P. Vernoux, J.-P. Deloume, Oxygen mobility in lanthanum nickelate catalysts for deep oxidation of propane, Solid State Ionics, 179 (2008) 1071-1075. [33] W. Yang, Y. Feng, W. Chu, Catalytic Chemical Vapor Deposition of Methane to Carbon Nanotubes: Copper Promoted Effect of Ni/MgO Catalysts, Journal of Nanotechnology, 2014 (2014) 1-5. [34] T. Mondal, K.K. Pant, A.K. Dalai, Catalytic oxidative steam reforming of bio-ethanol for hydrogen production over Rh promoted Ni/CeO 2–ZrO 2 catalyst, international journal of hydrogen energy, 40 (2015) 2529-2544. [35] L. Bednarczuk, P.R. de la Piscina, N. Homs, Efficient CO 2-regeneration of Ni/Y 2 O 3 La 2 O 3 ZrO 2 systems used in the ethanol steam reforming for hydrogen production, International Journal of Hydrogen Energy, 41 (2016) 19509-19517. [36] V. Palma, F. Castaldo, P. Ciambelli, G. Iaquaniello, CeO2-supported Pt/Ni catalyst for the renewable and clean H2 production via ethanol steam reforming, Applied Catalysis B: Environmental, 145 (2014) 73-84. [37] H.F. Wang, H.Y. Li, X.Q. Gong, Y.L. Guo, G.Z. Lu, P. Hu, Oxygen vacancy formation in CeO2 and Ce(1-x)Zr(x)O2 solid solutions: electron localization, electrostatic potential and structural relaxation, Phys Chem Chem Phys, 14 (2012) 16521-16535. [38] J. Deng, W. Chu, B. Wang, W. Yang, X.S. Zhao, Mesoporous Ni/Ce1−xNixO2−y heterostructure as an efficient catalyst for converting greenhouse gas to H2 and syngas, Catal. Sci. Technol., 6 (2016) 851-862. [39] B. Paul, K. Singh, T. Jaroń, A. Roy, A. Chowdhury, Structural properties and the fluorite–pyrochlore phase transition in La 2 Zr 2 O 7: the role of oxygen to induce local disordered states, Journal of Alloys and Compounds, 686 (2016) 130-136. [40] M. Tada, S. Zhang, S. Malwadkar, N. Ishiguro, J. Soga, Y. Nagai, K. Tezuka, H. Imoto, S. Otsuka-Yao-Matsuo, S. Ohkoshi, Y. Iwasawa, The active phase of nickel/ordered Ce2Zr2O(x) catalysts with a discontinuity (x=7-8) in methane steam reforming, Angew Chem Int Ed Engl, 51 (2012) 9361-9365. [41] F. Zhang, C. Tracy, M. Lang, R. Ewing, Stability of fluorite-type La 2 Ce 2 O 7 under extreme conditions, Journal of Alloys and Compounds, 674 (2016) 168-173. [42] H. Teterycz, R. Klimkiewicz, M. Łaniecki, The role of Lewis acidic centers in stabilized zirconium dioxide, Applied Catalysis A: General, 249 (2003) 313-326. [43] J. Bellido, E. Assaf, Nickel catalysts supported on ZrO 2, Y 2 O 3-stabilized ZrO 2 and CaO-stabilized ZrO 2 for the steam reforming of ethanol: effect of the support and nickel load, Journal of Power Sources, 177 (2008) 24-32. [44] J. Bussi, M. Musso, S. Veiga, N. Bespalko, R. Faccio, A.-C. Roger, Ethanol steam reforming over NiLaZr and NiCuLaZr mixed metal oxide catalysts, Catalysis Today, 213 (2013) 42-49.
|