跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 20:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張祖維
研究生(外文):Zu-Wei Chang
論文名稱:氨基於鋯金屬有機支架(UiO-66- NH3+)吸附砷離子的影響
論文名稱(外文):The effect of amine functional group on UiO-66-NH3+ for arsenate uptake
指導教授:李篤中李篤中引用關係
指導教授(外文):Duu-Jong Lee
口試委員:鄭智嘉christopher whitely
口試委員(外文):christopher whitely
口試日期:2017-07-11
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:66
中文關鍵詞:金屬有機支架
外文關鍵詞:metal organic frameworkUiO-66
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於金屬有機支架具有較高的比表面積且方便修飾等特性,所以近年來廣受眾人研究;由於大部分的金屬有機支架無法長時間於水中保持穩定的結構,唯有特定某些金屬有機支架例外,其中鋯金屬有機支架( UiO-66)是個很好的例子。砷離子除了本身對於某些氧化金屬表面具有較佳的鍵結能力之外,對於含氨基修飾之化合物也有相當不錯的靜電作用力,因此本研究以含有氨基官能基的鋯金屬有機支架( UiO-66-NH2)作為吸附水中砷離子的吸附劑,希望能提升原有的鋯金屬有機支架( UiO-66)吸附砷離子的能力。首先藉由DLS、SEM與氮氣吸脫附裝置來確定哪一種合成條件合成出來的樣品構型較適合作為吸附砷的吸附劑,當DMF/Zr的莫耳比為350時,其結構呈現1微米左右球狀結晶,此結果比其他條件合成出來樣品的粒徑較大且無大孔的形成;接著再以XRD、FTIR、NMR與TGA來確認鋯金屬有機支架( UiO-66-NH2)的合成產物是否含有不純物,並將產物進行純化 。當確認鋯金屬有機支架( UiO-66-NH2)成功合成出來後,藉由杯瓶實驗測試鋯金屬有機支架( UiO-66-NH2)相較於UiO-66是否有較佳吸附砷離子的結果。由實驗結果得知,鋯金屬有機支架( UiO-66-NH2)在酸化6小時後,在pH 7條件下做吸附實驗,發現其具有與鋯金屬有機支架( UiO-66)差不多的最大砷離子吸附量147mg/g;由酸化時間與砷離子吸附量的趨勢來看,鋯金屬有機支架( UiO-66-NH2)的最大砷離子吸附量有可能可以超越鋯金屬有機支架( UiO-66)。
Recently, metal organic framework is popular research topic for scientist because it possesses high specific surface area and easy to modify. However, most of them are not stable when they are in aqueous solution for a long period except for UiO-66, one of metal organic framework, they can stay stable in aqueous solution. So compare to other MOFs, it can be applied in many ways. Besides, arsenate possess not only high affinity with some metal oxide surface but some electrostatic interaction with amine functional group. Hence, UiO-66-NH2 may possess higher maximum adsorption capacity for arsenate uptake than UiO-66. In this study, First, we would find out which kind of morphology of UiO-66-NH2 is suitable being adsorbent by DLS, SEM, nitrogen adsorption desorption isotherm. When the molar ratio of DMF and zirconium tetrachloride is 350, the size of product is about 1 micrometer and possess denser structure than other synthesis condition. Then, using XRD, FTIR, NMR and TGA to investigate whether the synthesis process for UiO-66-NH3+ can successfully synthesize it or not. Finally, measurement the adsorption capacity of UiO-66-NH2 by batch adsorption experiment. From the result, the maximum adsorption capacity of UiO-66-NH2 with 1M hydrochloride acid treatment for 6 hours is about 147mg/g. it is similar to result of UiO-66 which is 149mg/g. Moreover, the trend of the time for acid treatment and maximum adsorption capacity of UiO-66-NH3+ is in proportion. Hence, maximum adsorption capacity of UiO-66-NH3+ with longer period for acid treatment may higher than result of UiO-66.
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES xi
LIST OF TABLES xiii
Chapter 1 Introduction 1
Chapter 2 Literature review 2
2.1 Arsenic 2
2.1.1 Introduction of arsenic 2
2.1.2 Adsorption technology for arsenate removal 5
2.2 Metal Organic Framework 8
2.2.1 UiO-66 10
Chapter 3 Material and Method 11
3.1 Chemicals 11
3.2 Synthesis process 12
3.2.1 Preparation of UiO-66 & UiO-66-NH2 12
3.2.2 UiO-66-NH2 hydrochloride acid treatment 13
3.3 Characterization and instrumentation 14
3.3.1 Powder X-Ray Diffraction 14
3.3.2 Fourier Transform Infrared Spectroscopy 14
3.3.3 Nuclear Magnetic Resonance 14
3.3.4 N2 adsorption and desorption isotherm 15
3.3.5 Field-Emission Transmission electron microscope 15
3.3.6 Field-Emission Scanning Electron Microscope 16
3.3.7 Dynamic light scattering 16
3.3.8 Zeta potential 16
3.3.9 pH meter 17
3.3.10 Inductively Coupled Plasma Mass Spectrometry 17
3.4 Adsorption experiments 18
3.4.1 Adsorption isotherm 18
3.4.2 Adsorption kinetic 19
Chapter 4 Result and discussion 20
4.1 The geometry structure of UiO-66-NH2 20
4.2 Characteristics of adsorbent 28
4.2.1 FTIR for UiO-66 & UiO-66-NH2 28
4.2.2 NMR for UiO-66 & UiO-66-NH2 31
4.2.3 X-ray Diffraction for UiO-66 & UiO-66-NH2 34
4.2.4 Thermogravimetric analysis for UiO-66-NH2 & UiO-66-NH3+ 37
4.3 Adsorption experiment 41
4.3.1 The pH effect for arsenate uptake 41
4.3.2 Adsorption kinetics 44
4.3.3 Adsorption isotherm 45
Chapter 5 Conclusion & future work 49
Chapter 6 Reference 50
Appendix A competitive adsorption 58
1. Smedley, P.L, Kinniburgh,D.G., A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 2002. 17: p. 517-368.
2. Ihsanullah, Aamir A., Adnan M.A-A, Tahar, L, Mohammed J.A-M, Mustafa S.N., Majeda, K, Muataz, A.A, metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Separation and Purification Technology, 2016. 157: p. 141-161.
3. W.P. Tseng, Effects and Dose Response Relationships of Skin Cancer and Blackfoot Disease with Arsenic. Environ Health Perspectives, 1977. 19: p. 109-119.
4. WHO, Guidelines for drinking-water quality. 2011. 1: p. 1-564.
5. R. J, L. Sr., Sax's Dangerous Properties of Industrial Materials, WILEY, 5862, 2012
6. Documentation of the Threshold Limit Values and Biological Exposure Indices, Association advancing occupational and environmental health, 200, 2016
7. C. B. Furlong, Effects of Arsenic in the Canadian Environment, National Research Council Canada, 219, 1978
8. W. H. Ahrens, Handbook of the Weed Science society of America 7th edition, Weed Science Society of America, 352, 1994
9. B.K. Mandal, K.T. Suzuki, Arsenic round the world: a review, Talanta, 2002, 58, 201–235
10. A.M. Sancha, Removal of arsenic from drinking water supplies: Chilean experience, International Water Association, 18, 2000, 621–624
11. M.E. Cebrian, A. Albores, M. Aguilar, E. Blakely, Chronic arsenic poisoning in the North of Mexico, Human toxicology, 1983, 121–133
12. R.R. Shrestha, M.P. Shrestha, N.P. Upadhyay, R. Pradhan, R. Khadka, A. Maskey, M. Maharjan, S. Tuladhar, B.M. Dahal, K. Shrestha, Groundwater arsenic contamination, its health impact and mitigation program in Nepal, Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 38, 2003, 185–200
13. R.S. Burkel, R.C. Stoll, Naturally occurring arsenic in sandstone aquifer water supply wells of North Eastern Wisconsin, Groundwater Monitoring & Remediation, 19, 1999, 114–121.
14. M. Berg, H.C. Tran, T.C. Nguyen, H.V. Pham, R. Schertenleib, W. Giger, Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat, Environmental Science & Technology, 35, 2001, 2621–2626.
15. Grund, S.C., K. Hanusch, and H.U. Wolf, Arsenic and Arsenic Compounds. Ullmann's Encyclopedia of Industrial Chemistry, 2008.
16. C.P. Huang, P.L.K. Fu, Treatment of Arsenic(V)-Containing Water by the Activated Carbon Process. Water Environment Federation, 1984. 56: p. 233-242.
17. Kamala, C.T., Chu, K.H., Chary, N.S., Pandey, P.K., Ramesh, S. L., Sastry, A.R., Sekhar, K.C., Removal of arsenic(III) from aqueous solutions using fresh and immobilized plant biomass. Water Research, 2005. 39(13): p. 2815-2826.
18. Bentahar Y., Hurel C., Draoui K., Khairoun S., Marmier N., Adsorptive properties of Moroccan clays for the removal of arsenic(V) from aqueous solution. Applied Clay Science, 2016. 119: p. 385-392.
19. Ladeira, A.C., Ciminelli V.S., Adsorption and desorption of arsenic on an oxisol and its constituents. Water Research, 2004. 38(8): p. 2087-94.
20. J. Yang, H.W. Zhang, M. Yu, Emmanuelawati, I., Z. Jin, Z.G Yuan, C.Z. Yu, High-Content, Well-Dispersed γ-Fe2O3Nanoparticles Encapsulated in Macroporous Silica with Superior Arsenic Removal Performance. Advanced Functional Materials, 2014. 24(10): p. 1354-1363.
21. S. Wang, H. Lan, H. Liu, J. Qu, Fabrication of FeOOH hollow microboxes for purification of heavy metal-contaminated water. Physical Chemistry Chemical Physics, 2016. 18(14): p. 9437-45.
22. Pena, M. E., Korfiatis, G. P., Patel, M.,Lippincott, L.,Meng, X., Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Research, 2005. 39(11): p. 2327-2337
23. H. Wu., Y.S. Chua, Krungleviciute, V., Tyagi, M., Chen, P., Yildirim, T., Z. W., Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. Journal of American Chemical Society, 2013. 135(28): p. 10525-32.
24. Y. Ma, Y.M. Zheng, J.P. Chen, A zirconium based nanoparticle for significantly enhanced adsorption of arsenate: Synthesis, characterization and performance. Journal of Colloid and Interface Science, 2011. 354(2): p. 785-792.
25. Mahanta, N., J.P. Chen, A novel route to the engineering of zirconium immobilized nano-scale carbon for arsenate removal from water. Journal of Materials Chemistry A, 2013. 1(30): p. 8636.
26. H Cui, Q. Li, S. Gao., J.K. Shang, Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles, Journal of Industrial and Engineering Chemistry, 2012. 18(4): p. 1418-1427.
27. Kiril D.H., Paul K.W., John C.C., Larry W.O., Arsenate Removal by Nanostructured ZrO2 Spheres. environmental science and technology, 2008. 42: p. 3786-3790.
28. Z.Q. Li, Y.J. Chao, K.W. Sui, N. Yin, Facile synthesis of metal-organic framework MOF-808 for arsenic removal. Materials Letters, 2015. 160: p. 412-414.
29. M. Jian, B. Liu, G. Zhang, R. Liu, X. Zhang, Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015. 465: p. 67-76.
30. Y.N. Wu, M. Zhou, B.G. Zhang, B.z. Wu, J. Li , J.L. Qiao, X.H. Guan, F.T. Li, Amino acid assisted templating synthesis of hierarchical zeolitic imidazolate framework-8 for efficient arsenate removal. royal society of chemistry. 6: p. 1105-1112.
31. J. Li, Y.N. Wu, Z. Li, B. Zhang, M. Zhu, X. Hu, Y.M. Zhang, F.T. Li, Zeolitic Imidazolate Framework-8 with High Efficiency in Trace Arsenate Adsorption and Removal from Water. the journal of physical chemistry c, 2014. 118: p. 27382-27387.
32. B.J. Zhu, X.Y. Yu, Y. Jia, F.M. Peng, B. Sun, M.Y. Zhang, T.Luo, J.H. Liu, X.J. Huang, iron and 1,3,5-Benzenetricarboxylic Metal−Organic Coordination Polymers Prepared by Solvothermal Method and Their Application in Efficient As(V) Removal from Aqueous Solutions. journal of physical chemistry c, 2012. 116: p. 8601-8607.
33. Tuan. A. Vu,Giang. H. Le, Canh. D. Dao, Lan. Q. Dang, Kien. T. Nguyen, Quang. K. Nguyen, Phuong. T. Dang, Hoa. T. K. Tran, Quang. T. Duong, Tuyen. V. Nguyena, Gun. D. Lee, Arsenic removal from aqueous solutions by adsorption using novel MIL-53(Fe) as a highly efficient adsorbent. RSC Advances, 2015(7): p. 5261–5268.
34. J. Li, Y.N. Wu, Z.H. Li, M. Zhu, F.T. Li, Characteristics of arsenate removal from water by metal-organic frameworks (MOFs). Water Science & Technology, 2014. 70: p. 1391-1397.
35. J.W. Jun, M. Tong, B. K. Jung, Z.B. Hasan, C.l.Zhong, S. H. Jhung, Effect of Central Metal Ions of Analogous Metal–Organic Frameworks on Adsorption of Organoarsenic Compounds from Water: Plausible Mechanism of Adsorption and Water Purification. Chemistry a European journal, 2015. 21(1): p. 347-354.
36. C.H. Wang, X.L. Liu, J.P. Chen, K. Li, Superior removal of arsenic from water with zirconium metal-organic framework UiO-66. scientific reports, 2015. 5: p. 16613.
37. B. Lia, X.Y. Zhua, K.L. Hub, Y.S. Lia, J.f. Fengb, J.l. Shia, J.l. Gu, Defect creation in metal-organic frameworks for rapid and controllable decontamination of roxarsone from aqueous solution. journal of hazardous materials, 2016. 302: p. 57-64.
38. 28.Y. Yu, L. Yu, J.P. Chen, Introduction of an Yttrium–Manganese Binary Composite That Has Extremely High Adsorption Capacity for Arsenate Uptake in Different Water Conditions. Industrial & Engineering Chemistry Research, 2015. 54(11): p. 3000-3008.
39. Veličković, Z., Vuković, G.D., Marinković, A.D., Moldovan, M.S., Perić-Grujić, A.A., Uskoković, P.S., Ristić, M.Đ, Adsorption of arsenate on iron(III) oxide coated ethylenediamine functionalized multiwall carbon nanotubes. Chemical Engineering Journal, 2012. 181-182: p. 174-181.
40. Yoshitake, H., T. Yokoi, T. Tatsumi, adsorption of chromate and arsenate by amino functionalized mcm-41 and sba-1. Chemistry of Materials, 2002. 14: p. 4603-4610.
41. S. Deng, G. Yu, S. Xie, Q. Yu, J. Huang, Y. Kuwaki, M. Iseki, Enhanced Adsorption of Arsenate on the Aminated Fibers: Sorption Behavior and Uptake Mechanism, Langmuir 2008, 24: p10961-10967
42. J. Ding, Z. Yang, C. He, X. Tong, Y. Li, X. Niu, H. Zhang, UiO-66(Zr) coupled with Bi(2)MoO(6) as photocatalyst for visible-light promoted dye degradation. Journal of Colloid and Interface Science, 2017. 497: p. 126-133.4.
43. Horcajada, P., Surble, S., Serre, C., Hong, D. Y., Seo, Y. K., Chang, J. S., Greneche, J. M., Margiolaki, I., Ferey, G., Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chemical Communications, 2007(27): p. 2820-2.
44. D. Wang, J. Liu, Z. Liu, A chemically stable europium metal-organic framework for bifunctional chemical sensor and recyclable on–off–on vapor response. Journal of Solid State Chemistry, 2017. 251: p. 243-247.
45. N. Yin, K. Wang, L. Wang, Z. Li, Amino-functionalized MOFs combining ceramic membrane ultrafiltration for Pb (II) removal. Chemical Engineering Journal, 2016. 306: p. 619-628.
46. V. Guillerm, F. Ragon, M. Dan-Hardi, T. Devic, M. Vishnuvarthan, B. Campo, A. Vimont, G. Clet, Q. Yang, G. Férey, A. Vittadini, S. Gross, G. Maurin, C. Serre, A Series of Isoreticular, Highly Stable, Porous Zirconium Oxide Based Metal–Organic Frameworks. Angewandte chemie, 2012. 51(37): p. 9267-9271.
47. Cychosz, K.A., A.J. Matzger, Water stability of microporous coordination polymers and the adsorption of pharmaceuticals from water. Langmuir, 2010. 26(22): p. 17198-202.
48. Jasmina H.C., Søren J., Unni O., Nathalie G., Carlo L., Silvia B., Karl P. L., a new zirconium inorganic building brick forming metal organic frameworks with exceptinoal stability. Journal of the American Chemical Society, 2008. 130: p. 13850-13851.
49. H. Wu, Taner Y., W. Zhou, Exceptional Mechanical Stability of Highly Porous Zirconium Metal-Organic Framework UiO-66 and Its Important Implications. the journal of physical chemistry letters, 2013. 4(6): p. 925-30.
50. V. Guillerm, F. Ragon, M. Dan-Hardi, T. Devic, M. Vishnuvarthan, B. Campo, A. Vimont, G. Clet, Q. Yang, G. Férey, A. Vittadini, S. Gross, G. Maurin, C. Serre, A Series of Isoreticular, Highly Stable, Porous Zirconium Oxide Based Metal–Organic Frameworks. Angewandte chemie, 2012. 51(37): p. 9267-9271.
51. S.M. Chavan, G.C. Shearer, S.Svelle, U.Olsbye, F.Bonino, J.Ethiraj, K.P.Lillerud, S. Bordiga, Synthesis and characterization of amine-functionalized mixed-ligand metal-organic frameworks of UiO-66 topology. Inorgic Chemistry, 2014. 53(18): p. 9509-15.
52. Valenzano, L., Civalleri, B., Chavan, S., Bordiga, S., Nilsen, M.H., Jakobsen, S., Lillerud, K.P., Lamberti, C., Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory. Chemistry of Materials, 2011. 23(7): p. 1700-1718.
53. Saleem, H., Rafique, U., Davies, R.P., Investigations on post-synthetically modified UiO-66-NH2 for the adsorptive removal of heavy metal ions from aqueous solution. Microporous and Mesoporous Materials, 2016. 221: p. 238-244
54. Christopher A. T, Kevin J. G., S. Lee, Felipe G., Hans-Beat B., and Omar M.Y., Definitive molecular level characterization of defects in UiO-66 crystals. Angewandte chemie, 2015. 54(38): p. 11162-7.
55. D.L. Wetzel, Y.C. Shi, J.A. Reffner, Synchrotron infrared confocal microspectroscopical detection of heterogeneity within chemically modified single starch granules, Applied Spectroscopy, 2010, 64, 282-285
56. M. Pelucchi, B. Ruscic, A. frassoldati, P. Glarborg, High temperature chemistry of HCl and Cl2, combustion and flame, 2015 162, p. 2693-2704
57. Folens, K., Leus, K., Nicomel, N.R., Meledina, M., Turner, S., Van Tendeloo, G., Laing, G.D., Van Der Voort, P., Fe3O4@MIL-101 - A Selective and Regenerable Adsorbent for the Removal of As Species from Water. European Journal of Inorganic Chemistry, 2016. 2016(27): p. 4395-4401
58. C.G.Lee, Pedro J.J. A., Aram N., Seong J. P., Taegu D, Ung S.C., S.H. Lee, Arsenic(V) removal using an amine-doped acrylic ion exchange fiber: Kinetic, equilibrium, and regeneration studies , Journal of Hazardous Materials, 2017. 325: p.223–229
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top