跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 04:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴曉萍
研究生(外文):Hsiao-Ping Lai
論文名稱:高透光度高分子半導體材料應用於有機薄膜電晶體透明主動層之研究
論文名稱(外文):Study of High Transmittance Polymer Semiconductor as Active Layer for Transparent Organic Thin Film Transistors
指導教授:戴龑
指導教授(外文):Yian Tai
口試委員:邱昱誠陳燿騰
口試委員(外文):Yu-Cheng ChiuYaw-Terng Chern
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:120
中文關鍵詞:有機薄膜電晶體高透光度
相關次數:
  • 被引用被引用:0
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討適合用於有機薄膜電晶體之透明主動層材料,分
別為吸收光譜在紫外光區之Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA),以及紅外線區之低能隙材料 Poly{2,6-4,8-di(5-ethylhexylthienyl) benzo [1,2-b;3,4-b] dithiophene-alt-5-dibutyloctyl-3,6-bis(5-bromothiophen-2-yl)pyrrolo[3,4c]pyrrole1,4-dione (PBDTT-DPP)。
於此研究中發現,利用自組裝單分子層薄膜 (Self-Assembled
Monolayer )修飾有機薄膜電晶體元件氧化銦錫 ( ITO ) 電極及聚三苯
胺主動層之介面,可有效提升電晶體效能。對於低能隙材料
PBDTT-DPP,則可於製程中利用適當之退火條件提升主動層之高分
子晶相,以提升其電晶體效能。此外,吾人亦發現在適當環境及溫度
條件下製備 PBDTT-DPP 溶液,可以此溶液製作出之主動層具有雙極
性特徵。以 X 光光電子能譜分析,發現此雙極性特徵可能與大氣中
的水分子進入主動層所造成之影響有關。
In this study, we investigate the transparent semiconductor
materials which can be applied on Organic thin film transistors (OTFT).
We demonstrate that Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA), a polymer with an absorption spectrum in Ultraviolet (UV) region, and poly{2,6-4,8-di(5-ethylhexylthienyl) benzo [1,2-b;3,4-b] dithiophene-alt-5-dibutyloctyl-3,6-bis(5-bromothiophen-2-yl)pyrrolo[3,4
c]pyrrole-1,4-dione (PBDTT-DPP), a low bandgap material which has a absorption spectrum in near infrared (NIR) region.
We utilized the different self-assembled monolayer (SAM) to
modified the surface of indium tin oxide electrodes for improving the performance of PTAA-based OTFT. For the low bandgap material,
PBDTT-DPP, induced the thickness of PTAA film for increasing the
transparency which can achieve to 90%. Using thermal annealing to
enhance the performance of devices and preparing materials in the
appropriate environment which will have ambipolar effect .
中文摘要 ..................................................................................................... I
Abstract ...................................................................................................... II
致謝 ........................................................................................................... III
目錄 .......................................................................................................... IV
圖目錄 ..................................................................................................... VII
表目錄 ..................................................................................................... XII
第一章緒論 ................................................................................................. 1
1-1 前言 ............................................................................................ 1
1-2 研究動機與目的 ........................................................................ 2
第二章原理簡介與文獻回顧 .................................................................... 4
2-1 無機/有機電晶體發展 ............................................................... 4
2-1-1 無機半導體傳導機制.................................................... 10
2-1-2 有機半導體傳導機制.................................................... 12
2-2 有機薄膜電晶體基本原理 ...................................................... 14
2-2-2 雙極性電晶體 ................................................................ 17
2-2-3 有機薄膜電晶體之重要參數 ........................................ 18
2-3 透明有機薄膜電晶體 ............................................................. 22
2-4 共軛導電高分子 ..................................................................... 25


V

2-4-1 聚三苯胺共軛導電高分子 ............................................ 27
2-4-2 低能隙共軛導電高分子 ................................................ 27
2-5 自組裝單分子薄膜 (Self-assembled monolayer, SAM) ....... 28
2-5-1 自組裝單分子薄膜應用於有機光電元件之文獻 ........ 31
第三章實驗設備與方法 .......................................................................... 34
3-1 儀器設備 ................................................................................. 34
3-2 實驗藥品與器材 ..................................................................... 35
3-3 實驗步驟 ................................................................................. 36
3-3-1 基板圖樣化流程圖 ........................................................ 36
3-3-2 成長自組裝單分子薄膜 ............................................... 41
3-3-2 有機薄膜電晶體之製備 ............................................... 42
3-4 材料鑑定與分析 ..................................................................... 46
3-4-1 半導體量測儀 (Semiconductor Device Parameter
Analyzer) ...................................................................... 46
3-4-2 原子力顯微鏡(Atomic Force Microscope, AFM) ........ 47
3-4-3 場發射掃描式電子顯微鏡(Field-Emission Scanning
Electron Microscope, FE-SEM) ................................... 49
3-4-4 紫外光/可見光分光光譜儀(Ultraviolet/ Visible
Spectrophotometer, UV/Vis) ........................................ 51


VI

3-4-5 接觸角測量儀(Contact Angle) ...................................... 52
3-4-6 X 射線光電子能譜化學分析儀 (X-ray photoelectron
spectrometer, XPS) ....................................................... 53
第四章實驗結果與討論 .......................................................................... 54
4-1 優化 PTAA 之薄膜電晶體效能 ............................................ 55
4-1-1 PTAA 最佳轉速之分析 ................................................. 56
4-1-2 分析 PTAA 退火溫度之影響 ....................................... 61
4-1-3 以不同官能基自組裝單分子薄膜改質有機薄膜電晶體
...................................................................................... 65
4-1-4 不同官能基自組裝單分子薄膜對 PTAA 電晶體元件之
特性分析 ...................................................................... 68
4-1-5 以 PTAA 作全透明電晶體 ........................................... 75
4-2 探討低能隙材料 PBDTT-DPP ................................................ 79
4-2-1 探討 PBDTT-DPP 之透明度 ........................................ 80
4-2-2 退火溫度對 PBDTT-DPP 之影響 ................................ 81
4-2-3 不同環境製備 PBDTT-DPP 之影響 ............................ 85
4-3-4 探討 PBDTT-DPP 之穩定性 ........................................ 96
第五章結論 ............................................................................................. 101
參考文獻 ........................................................................................... 102
1Bernard Kippelen, Jean-Luc Brédas, Energy Environ. Sci.,2,251 (2009) 2 Jens Meyer, Piran R. Kidambi, Bernhard C. Bayer, Christ Weijtens, Anton Kuhn, Alba Centeno, Amaia Pesquera, Amaia Zurutuza, John Robertson, and Stephan Hofmann, Sci. Rep.4, 5380 (2014) 3 H. E. Katz, and Z. Bao, J. Phys. Chem., 104, 671 (2000) 4 Toshihisa Tsukada, Springer-Verlag, 37, 7 (2000) 5 R. Weinstein, IT Professional, 7, 27 (2005) 6 Zheng-Tao Zhu, Jeffrey T. Mason, Rüdiger Dieckmann, and George G. Malliaras, Appl. Phys. Lett., 81, 4643(2002) 7 W. Shockley, Bell Syst. Tech J. , 28, 435 (1949) 8 D. Kahng and M. M. Atalla, in IRE Device Research Conference, Pittsburgh, (1960) 9 M. Pope, H. Kallmann, P. Magnante, J. Chem. Phys. , 38, 2024 (1963) 10 C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Hegger, H. Shirakawa, E. J. Louis, S. C. Gua and A. G. MacDiarmid, Phys. Rev. Lett., 39, 1098 (1977) 11 A. Tsumura, H. Koezuka and T. Ando, Appl. Phys. Lett. , 49, 1210 (1986) 12 C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987) 13 Sara A. Dibenedetto, Antonio Facchetti, Mark A. Ratner, Tobin J. Marks, Adv. Mater. , 21, 10407, (2009) 14Ron Mertens, OLED-Info, (2014) 15R. Brown, C. P. Tarrett, D. M. de Leeuw and M. Matters, Synth. Met., 88, 37, (1997) 16P. G. Le Comber and W. E.Spear, Phys. Rev. Lett., 25, 509, (1970) 17G. Horowitz and P. Delannoy, J. Appl. Phys., 70, 469, (1991) 18G. Horowitz, R. Hajlaoui and P. Delannoy, J. Phys. III, 5, 355, (1995)
19A. R. Brown, D. M. de Leeuw, E. E. Havinga and A. Pomp, Synth. Met.,
68, 65, (1994)
20M. C. J. M. Vssenberg and M. Matters, Phys. Rev. B, 57, 12964, (1998) 21J. Zaumseil, H. Sirringhaus, Chem. Rev. 107, 4 (2007)
22A. Dodabalapur, H. E. Katz, L. Torsi, R. C. Haddon, Science,269,1560
(1995) 23 H. Wang, J. Wang, X. Yan, J. Shi, H. Tian, Y. Geng, D. Yan, Appl.
Phys. Lett., 88, 133508 (2006) 24 Yongbo Yuan, Gaurav Giri, Alexander L. Ayzner, Arjan P. Zoombelt, Stefan C. B. Mannsfeld, Jihua Chen, Dennis Nordlund, Michael F. Toney, Jinsong Huang and Zhenan Bao, Nat. Commun. 5, 3005, (2014) 25 B. Wessling, Syntheic Metals, 45,119,(1991) 26 P. Hourquebie, L. Olmedo, Syntheic Metals, 65, 19,(1994) 27J.H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.S. Lim,J.A. Chang, Y.H. Lee,
H.-J. Kim, A. Sarkar, Md. K. Nazeeruddin,M. Gratzel, S. I. Seok, , nature photonics,7, 487 (2013) 28廖純敏,改變 TiO2結構對(CH3NH3)PbI3敏化太陽能電池特性影響之 研究,國立交通大學,(2013) 29 H. Brisset, C. T. Gauthier, A. Gorgues, M. Jubault, J. Roncali, J. Chem. Soc., Chem. Commun., 1305 (1994) 30 M. Pomerantz, X. Gu, Macromolecules, 34, 1817 (2001) 31Pierre-Luc T. Boudreault, Ahmed Najari, and Mario Leclerc, Chem. Mater., 23, 456 (2011) 32 Ulman. A. “An Introduction to Ultra-thin Organic Films”, Academic Press, San Diego, (1991) 33 Ulman. A. Chem. Rev. , 96, 1533, (1996)
34 Saghar Khodabakhsh, Brett M. Sanderson, Jenny Nelson, and Tim S. J. Adv. Funct. Mater. , 16, 95, (2006) 35 Jong Soo Kim, Jong Hwan Park, and Ji Hwang Lee, Applied Physics Letters , 91, 112111, (2007) 36 Sayantan Das, Joseph Joslin, T.L. Alford, Sol. Energy Mater. Sol. Cells, 124, 98, (2014) 37 Yu-Tai Tao, Kun-Yang Wu, Ko-Hui Huang , Tsong-Ping Perng ,Org. Electron., 12, 602, (2011) 38 M. Estrada, I. Mejia, A. Cerdeira, B. In˜iguez, Solid State Electron, 52, 53, (2008) 39 Hagen Klauk, Organic Electronics, Wiley , (2006) 40 Shigeaki Obataz and Yukihiro Shimoi “Phys. Chem., 15, 9265, (2013) 41 I. Kymissis, C. D. Dimitrakopoulos, S. Purushothaman, IEEE
Trans.Electron. Dev., 48, 1060, (2001)
42 H. Wang, Jun Wang, X. Yan, J. Shi, Hongkun Tian, Yanhou Geng, and
Donghang Yana, Appl. Phys. Lett, 88, 133508, (2006)
43 Hin-Lap Yip, Steven K. Hau, Nam Seob Baek, Hong Ma, Alex K.-Y.
Jen, Adv. Mater. 20, 2376, (2008)
44 J. L. Lenhart and W. Wu, Langmuir,19, 4863, (2003)
45 H.-L. Yip, S. K. Hau, N. S. Baek, H. Ma, and A. K.-Y. Jen, Adv. Mater.,
20, 2376 (2008)
46 Letian Dou, Jingbi You, Jun Yang, Chun-Chao Chen, Youjun He,
Seiichiro Murase, Tom Moriarty, Keith Emery, Gang Li and Yang
Yang, Nature Photon, 6, 180, (2012)
47蘇怡方,國立台灣科技大學化學工程研究所碩士論文, 105 學年度
48Hin-Lap Yip, Steven K. Hau, Nam Seob Baek and Alex K.-Y. Jen, Appl.
Phys. Lett, 92, 193313 (2008)
49楊翼綾,國立台灣科技大學化學工程研究所碩士論文, 98 學年度
50 Akarin Intaniwet, Christopher A. Mills, Paul J. Sellin, Maxim Shkunov
and Joseph L. Keddie, ACS Appl. Mater. Interfaces,2, 1692 (2010)
51 R. L. HoffmanB. J. Norris and J. F. Wager, Appl. Phys. Lett. 82, 733 (2003)
52 Mallory Mativenga, Min Hyuk Choi, Jae Won Choi, and Jin Jang,
Electron Device Lett. 32, 170 (2011)
53Jewook Ha, Seungjun Chung, Mingyuan Pei, Kilwon Cho, Hoichang
Yang and Yongtaek Hong, ACS Appl. Mater. Interfaces, 9, 8819(2017)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top