跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/08 12:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳冠傑
研究生(外文):Guan-Jie Chen
論文名稱:醋酸纖維素/三醋酸纖維素正滲透薄膜對有機物與無機物移除效率之研究
論文名稱(外文):Synthesis of cellulose acetate / cellulose triacetate membrane for removal of organics and inorganics by forward osmosis
指導教授:林昇佃李篤中李篤中引用關係
指導教授(外文):Shawn D. LinDuu-Jong Lee
口試委員:李篤中Christopher Whiteley鄭智嘉
口試委員(外文):Duu-Jong LeeChristopher WhiteleyChih-Chia Cheng
口試日期:2017-7-11
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:63
中文關鍵詞:汙水處理醋酸纖維素三醋酸纖維素正滲透膜
外文關鍵詞:water treatmentcellulose acetatecellulose triacetateforward osmosis membrane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:433
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
近年來,因為滲透壓技術能有效的移除水中大多的汙染物(金屬離子、藻類、有機汙染物)因此已經被人們廣泛的應用在汙水處裡的領域上。本研究主旨是利用旋轉塗布法將醋酸纖維素、三醋酸纖維素之混和高分子溶液均勻塗布於一種商用超濾膜上並透過相轉換原理使高分子溶液在超濾膜上形成一層緻密的選擇層進而形成一種正滲透薄膜並以此來模擬汙水中金屬離子與有機物的移除效率。本研究分為兩個部分,第一是正滲透膜的製備以及利用實驗設計方式來分析製備條件的最適化參數。第二是對本正滲透膜對於金屬離子與藻類有機分泌物的移除效率的探討。本研究使用了七種金屬離子(銅、鈣、鎂、汞、鋅、鉛、鉻)來製備金屬廢水並進行水中金屬離子移除實驗。而海藻酸與海藻酸鈉用來製備模擬含藻類廢水並進行水中汙染物移除處理實驗。在金屬移除實驗中,七種金屬的移除率均高達99 %,模擬藻類廢水之汙染物移除實驗的移除率也高達99 %。由這個結果可以了解到,本實驗所製備的正滲透膜對於汙染物具有很高的移除效率所以正滲透膜技術在廢水處理領域是很有前景與希望的。
Recently studies figured out that osmotically pressure driven membrane system was one kinds of water treatments which had been widely used in our life due to it can reject the undesired pollutants (metal ions, algae, organic particles) efficiently. The main objective in this research, cellulose acetate / cellulose triacetate (CA/CTA) mixing polymer is used as a selective layer embed on a commercial ultra-filter by spin coating and phase inversion, forming a forward osmosis membrane (FOM) with high rejection rate to pollutants. This forward osmosis membrane is used to simulate the rejection of metal ions and simulated algae in artificial waste water. The first of objectives is the synthesis and optimization for CA/CTA-FOM, the most suitable fabrication condition can be determined by design of experiment. The second part of this study is the rejection behavior of metal ions and algae toward the CA/CTA-FOM. 7 metal ions (Cu2+, Ca2+, Mg2+, Hg2+, Zn2+, Pb2+ and Cr3+) are used to prepare the metal ion wastewater for use in a rejection experiment. Sodium alginate and alginic acid are used to prepare the simulated algae wastewater for the rejection test. During the rejection experiment the rejection for 7 metal ions are about 99% and the rejection for simulated algae is 99%.
These outcomes show the property of high rejection rate. As the result of the high rejection property, FOM would be the promising wastewater treatment.
致謝……………………………………………………………………………………I
中文摘要………………………………………………………………………….……i
ABSTRACT…………………………………………………………………………...ii
CONTENTS...………………………………………………………………………...iii
LIST OF FIGURES…………………………………………………………………...vi
LIST OF TABLES……………………………………………….………………….viii
Chapter 1  Introduction…………………………………………………………...1
Chapter 2  Literature review………………………….…………………………..4
  2-1 Water pollution…………………………………………..………………….4
   2-1-1 Current situation……………………………………………………….4
2-1-2 Treatments for waste water………………………………………..…..5
2-2 Forward osmosis membrane technology…………………………………....7
2-2-1 Material design……………………………………………………...…7
2-2-2 Cellulose acetate (CA) cellulose triacetate (CTA)………………….....8
2-2-3 Pollutants removal mechanism by forward osmosis membrane…....…9
  2-3 Selective layer formation methods……………………………………….....9
2-3-1 Phase inversion method……………………………………………….9
2-3-2 Interfacial polymerization………………………………………..…..10
2-3-3 Layer by layer (LBL) deposition method…………………………....10
  2-4 CA/CTA-FOM………………………………………………………..…...11
  2-5 Draw solute……………………………………………………………......12
  2-6 Membrane fouling in FOM……………………………………………......14
Chapter 3  Material and experiments…………………….…………………..….15
  3-1 Experimental materials…………………………….…………………..…..15
  3-2 Fabrication of CA / CTA FOM…………………………………………......16
3-2-1 Polymer solution preparation……………………………………..…...16
3-2-2 Membrane fabrication……………………………………………........16
3-2-3 Membrane optimization…………...………….…………...……..........17
3-2-3-1 Taguchi method……………………………………………...…...17
3-2-3-2 Box-behnken method………….………………………...….…....19
  3-3 Experiment……………………………………………………………….....20
3-3-1 Experimental equipment set up………………………….…….….…. 20
3-3-2 Raw polluted water preparation………………………..........…..…….21
3-3-3 Analysis………………………………………………………....…… 22
Chapter 4  Result and discussion……………………………………..…………..24
  4-1 Optimization and performance test……………………………..…….…….24
4-1-1 Taguchi method………………………………………………..….…..24
4-1-2 Box-behnken method...................................................………...…….. 31
  4-2 Contact angle……………………………………………………...…….….39
  4-3 Morphology…………………………………………….………….…..…....41
  4-4 Rejection test………………………………………………….….…..….….45
4-4-1 Metal ion rejection test…………….…………...…….….……......…..45
4-4-2 Simulated algae rejection test………...……….……….…….......……47
  4-5 Fouling removal by ultra-sonication…………….………….………..…..…49
Chapter 5  Conclusions..........................................................................................53
Appendix A…………………………………………………………………...……...55
Appendix B…………………………………………………………………...……...56
Appendix C…………………………………………………………………...……...57
Appendix D…………………………………………………………………………..58
Appendix E…………………………………………………………………………...58
Appendix F…………………………………………………………………………...59
Reference……………………………………………………………………………..60
[1] M. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas, A. M. Mayes. Science and technology for water purification in the coming decades. Nature vol. 452, pp. 301-310, 2008.
[2] T. S. Chung, S. Zhang, K. Y. Wang, J. C. Su, and M. M. Ling. Forward osmosis process: yesterday, today and tomorrow. Desalination vol. 287, pp.78-81, 2012.
[3] D. L. Shaffer, J. R. Werber, H. Jaramillo, S. Lin, and M. Elimelech. Forward osmosis: Where are we now? Desalination vol. 356, pp. 271-284, 2015.
[4] F. Fu, Q. Wang. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management vol. 92, pp. 407-418, 2011.
[5] Q. Y. Chen, Z. Luo, C. Hills, G. Xue, M. Tyrer. Precipitation of heavy metals from wastewater using simulated flue gas: sequent additions of fly ash, lime and carbon dioxide. Water Research vol. 43, pp. 2605–2614, 2009.
[6] M. T. Alvarez, C. Crespo, B. Mattiasson. Precipitation of Zn(II), Cu(II) and Pb(II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids. Chemosphere vol. 66, pp. 1677–1683, 2007.
[7] Z. R. Guo, G. M. Zhang, J. D. Fang, and X. D. Dou. Enhanced chromium recovery from tanning wastewater. Journal of Cleaner Production vol. 14, pp. 75–79, 2006.
[8] L. Y. Blue, M. A. Van Aelstyn, M. Matlock, D. A. Atwood. Low-level mercury removal from groundwater using a synthetic chelating ligand. Water Research, vol. 42, pp. 2025–2028, 2008.
[9] M. K. Uddin. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal vol. 462 pp. 438–462, 2017.
[10] M. A. Barakat, E. Schmidt. Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater. Desalination vol. 256, pp. 90-93, 2010.
[11] G. Basaran, D. Kavak, N. Dizge, Y. Asci, M. Solener, B. Ozbey. Comparative study of the removal of nickel (II) and chromium (VI) heavy metals from metal plating wastewater by two nanofiltration membranes. Desalination and Water Treatment vol. pp. 1-11, 2015.
[12] L. N. Zhang, Y. J. Wu, X. Y. Qu, Z. S. Li, J. R. Ni. Mechanism of   combination membrane and electro-winning process on treatment and remediation of Cu2+ polluted water body. Environmental Science & Technology. vol. 21, pp. 764-769, 2009.
[13] S.Leob, R. S. Norman. Osmotic pressure plants. Science vol. 189, pp. 654-   
   655, 1975.
[14] G. Li, X. M. Li, T. He, B. Jiang, C. Gao. Cellulose triacetate forward membrane Preparation and characterization. Desalination and Water Treatment vol. 51, pp. 2656-2665, 2013.
[15] R. Z. Kochanov, M. Sairam, A. G. Livingston. Cellulose acetate forward osmosis membranes-effect of membrane chemistry on FO performance. Procedia Engineering vol. 44, pp. 258-260, 2012.
[16] J. E. Cadotte. Interfacial synthesized reverse osmosis membrane. US patent4, 277,344, 1981.
[17] S. Qi, C. Q. Qiu, C. Y. Tang. Synthesis and characterization of novel forward   osmosis membrane based on layer by layer assembly. Environmental Science & Technology vol. 45, pp. 5201-52.8, 2011.
[18] C. Qiu, S. Qi, C. Y. Tang. Synthesis of high flux forward osmosis membrane by chemically cross-linked layer by layer polyelectrolytes. Journal of Membrane Science. vol. 2381, pp. 74-80, 2011.
[19] A. Achilli, T. Y. Cath, A. E. Childress. Selection of inorganic-based draw solutions for forward osmosis applications. Journal of Membrane Science vol. 364, pp. 233-241, 2010.
[20] J. R. McCutcheon, R. L. McGinnis, M. Elimelech. A novel ammonia-carbon dioxide forward (direct) osmosis desalination process. Desalination vol. 174 1-11, 2005.
[21] S. Phuntsho, H.K Shon, S. Hong, S. Lee, S. Vigneswaran. A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: Evaluating the performance of fertilizer draw solutions. Journal of Membrane Science vol. 375, pp. 172-181, 2011.
[22] T. Y. Cath, A.E. Childress, M. Elimelech. Forward osmosis: Principles,     Applications, and recent developments. ScienceDirect vol. 281, pp. 70-87, 2006.
[23] F. Meng, H. Zhang, F. Yang, L. Liu. Characterization of cake layer in submerged membrane bioreactor. Environmental science & technology, pp.4065-4070, 2007.
[24] X. Wang, B. Yuan, Y. Chen, X. Li, Y. Ren. Integration of micro-filtration into osmosis membrane bioreactors to prevent salinity built-up. Bioresource technology vol. 167, pp. 116-123, 2014b.
[25] I.-J. Kang, S.-H. Yoon, C.-H. Lee. Comparison of the filtration characteristics of organic and inorganic membrane in a membrane-coupled anaerobic bioreactor. Water research vol. 36(7), pp. 1803-1813, 2002.
[26] Z. Wang, J. Ma, C. Y. Tang, K. K., Q. Wang. Membrane cleaning in membrane bioreactors: A review. Journal of Membrane Science vol. 465, pp. 275-307,2014.
[27] S. Judd. The MBR book: principles and Applications of Membrane Bioreactors for water and Wastewater Treatment. second edition, London, IWA pub., 2011.
[28] T. Kobayashi, T. Kobayashi, Y. Hosaka, N. Fujii. Ultrasound-enhanced membrane-cleaning processes applied water treatments: influence of sonic frequency on filtration treatments. Ultrasonics vol. 41, 185–190, 2003.
[29] X. J. Chai, T. Kobayashi, N. Fujii. Ultrasound-associated cleaning of polymeric membranes for water treatment. Separation and Purification Technology vol. 15, pp.139–146, 1999.
[30] Q. Y. Yang, J. H. Chen, F. Zhang. Membrane fouling control in a submerged
membrane bioreactor with porous, flexible suspended carriers. Desalination vol.
189, pp. 292–302, 2006.
[31] B. Mi, M. Elimelech. Organic fouling of forward osmosis membrane: Fouling reversibility and cleaning without chemical reagents. Journal of Membrane Science vol. 348, pp. 337-345, 2010.
[32] K. L. Tusi. An overview of Taguchi method and newly developed statistical methods for robust design. Iie Transactions, pp. 44-57, 1992.
[33] S. L. C. Ferreira, R. E. Bruns, H. S. Ferreira, G. D. Matos, J. M. David, G. C. Brandão, E. G .P. da Silva, L. A. Portugal, P. S. dos Reis, A. S. Souza, W.N.L. dos Santos. Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta vol. 597, pp. 179-186, 2007.
[34] G. Bracco, B. Holst. Surface Science Technique. Berlin, Springer, 2013.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top