|
References 1. Deng, D.; Chen, Y.; Cao, J.; Tian, J.; Qian, Z.; Achilefu, S.; Gu, Y., High-Quality CuInS2/ZnS Quantum Dots for In vitro and In vivo Bioimaging. Chemistry of Materials 2012, 24 (15), 3029-3037. 2. Sun, Y.; Song, F.; Qian, C.; Peng, K.; Sun, S.; Zhao, Y.; Bai, Z.; Tang, J.; Wu, S.; Ali, H.; Bo, F.; Zhong, H.; Jin, K.; Xu, X., High-Q Microcavity Enhanced Optical Properties of CuInS2/ZnS Colloidal Quantum Dots toward Non-Photodegradation. ACS Photonics 2017, 4 (2), 369-377. 3. Lv, G.; Guo, W.; Zhang, W.; Zhang, T.; Li, S.; Chen, S.; Eltahan, A. S.; Wang, D.; Wang, Y.; Zhang, J.; Wang, P. C.; Chang, J.; Liang, X.-J., Near-Infrared Emission CuInS/ZnS Quantum Dots: All-in-One Theranostic Nanomedicines with Intrinsic Fluorescence/Photoacoustic Imaging for Tumor Phototherapy. ACS Nano 2016, 10 (10), 9637-9645. 4. Knipe, J. M.; Peters, J. T.; Peppas, N. A., Theranostic agents for intracellular gene delivery with spatiotemporal imaging. Nano today 2013, 8 (1), 21-38. 5. Biju, V.; Itoh, T.; Ishikawa, M., Delivering quantum dots to cells: bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging. Chemical Society Reviews 2010, 39 (8), 3031-3056. 6. Ashenfelter, B. A.; Desireddy, A.; Yau, S. H.; Goodson III, T.; Bigioni, T. P., Fluorescence from molecular silver nanoparticles. The Journal of Physical Chemistry C 2015, 119 (35), 20728-20734. 7. Klostranec, J. M.; Chan, W. C. W., Quantum Dots in Biological and Biomedical Research: Recent Progress and Present Challenges. Advanced Materials 2006, 18 (15), 1953-1964. 8. Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H., Quantum dot bioconjugates for imaging, labelling and sensing. Nature materials 2005, 4 (6), 435. 9. Priem, B.; Tian, C.; Tang, J.; Zhao, Y.; Mulder, W. J., Fluorescent nanoparticles for the accurate detection of drug delivery. Expert opinion on drug delivery 2015, 12 (12), 1881-1894. 10. Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T., Quantum dots versus organic dyes as fluorescent labels. Nature methods 2008, 5 (9), 763-775. 11. Sardar, R.; Funston, A. M.; Mulvaney, P.; Murray, R. W., Gold nanoparticles: past, present, and future. Langmuir 2009, 25 (24), 13840-13851. 12. Thakor, A.; Jokerst, J.; Zavaleta, C.; Massoud, T.; Gambhir, S., Gold nanoparticles: a revival in precious metal administration to patients. Nano letters 2011, 11 (10), 4029-4036. 13. Wang, L.; Fernández‐Terán, R.; Zhang, L.; Fernandes, D. L.; Tian, L.; Chen, H.; Tian, H., Organic Polymer Dots as Photocatalysts for Visible Light‐Driven Hydrogen Generation. Angewandte Chemie 2016, 128 (40), 12494-12498. 14. Wolfbeis, O. S., An overview of nanoparticles commonly used in fluorescent bioimaging. Chemical Society Reviews 2015, 44 (14), 4743-4768. 15. Wu, C.; Chiu, D. T., Highly fluorescent semiconducting polymer dots for biology and medicine. Angewandte Chemie International Edition 2013, 52 (11), 3086-3109. 16. Zhang, X.; Wang, Z.; Xu, C., Demonstrating the Many Possible Colors of Gold-Supported Solid Nanoparticles. Journal of Chemical Education 2014, 92 (2), 336-338. 17. Zhang, Z.; Sun, W.; Wu, P., Highly photoluminescent carbon dots derived from egg white: facile and green synthesis, photoluminescence properties, and multiple applications. ACS Sustainable Chemistry & Engineering 2015, 3 (7), 1412-1418. 18. Bonilla, C. A. M.; Kouznetsov, V. V., “Green” Quantum Dots: Basics, Green Synthesis, and Nanotechnological Applications. In Green Nanotechnology - Overview and Further Prospects, Larramendy, M. L.; Soloneski, S., Eds. InTech: Rijeka, 2016; p Ch. 07. 19. Jelinek, R., Biological Applications of Carbon-Dots. In Carbon Quantum Dots: Synthesis, Properties and Applications, Jelinek, R., Ed. Springer International Publishing: Cham, 2017; pp 47-60. 20. Volkov, Y., Quantum dots in nanomedicine: recent trends, advances and unresolved issues. Biochemical and Biophysical Research Communications 2015, 468 (3), 419-427. 21. Zhou, J.; Liu, Y.; Tang, J.; Tang, W., Surface ligands engineering of semiconductor quantum dots for chemosensory and biological applications. Materials Today. 22. Michael King, D., Imaging of metastatic melanoma. Cancer Imaging 2006, 6 (1), 204-208. 23. Delorme, S.; Krix, M., Contrast-enhanced ultrasound for examining tumor biology. Cancer Imaging 2006, 6 (1), 148-152. 24. Namasivayam, S.; Martin, D. R.; Saini, S., Imaging of liver metastases: MRI. Cancer Imaging 2007, 7 (1), 2-9. 25. Wang, M.; Liu, X.; Cao, C.; Wang, L., Highly luminescent CuInS2-ZnS nanocrystals: achieving phase transfer and nuclear homing property simultaneously through simple TTAB modification. Journal of Materials Chemistry 2012, 22 (41), 21979-21986. 26. Chen, Y.; Li, S.; Huang, L.; Pan, D., Low-cost and gram-scale synthesis of water-soluble Cu-In-S/ZnS core/shell quantum dots in an electric pressure cooker. Nanoscale 2014, 6 (3), 1295-1298. 27. Permadi, A.; Fahmi, M. Z.; Chen, J.-K.; Chang, J.-Y.; Cheng, C.-Y.; Wang, G.-Q.; Ou, K.-L., Preparation of poly(ethylene glycol) methacrylate coated CuInS2/ZnS quantum dots and their use in cell staining. RSC Advances 2012, 2 (14), 6018-6022. 28. Wang, M.; Chen, Z.; Cao, C., Preparation of magnetic CuInS2–ZnS nanocomposites for bioimaging. Materials Letters 2014, 120, 50-53. 29. Yu, K.; Ng, P.; Ouyang, J.; Zaman, M. B.; Abulrob, A.; Baral, T. N.; Fatehi, D.; Jakubek, Z. J.; Kingston, D.; Wu, X.; Liu, X.; Hebert, C.; Leek, D. M.; Whitfield, D. M., Low-Temperature Approach to Highly Emissive Copper Indium Sulfide Colloidal Nanocrystals and Their Bioimaging Applications. ACS Applied Materials & Interfaces 2013, 5 (8), 2870-2880. 30. Foda, M. F.; Huang, L.; Shao, F.; Han, H.-Y., Biocompatible and Highly Luminescent Near-Infrared CuInS2/ZnS Quantum Dots Embedded Silica Beads for Cancer Cell Imaging. ACS Applied Materials & Interfaces 2014, 6 (3), 2011-2017. 31. Dong, C.; Liu, Z.; Zhang, L.; Guo, W.; Li, X.; Liu, J.; Wang, H.; Chang, J., pHe-Induced Charge-Reversible NIR Fluorescence Nanoprobe for Tumor-Specific Imaging. ACS Applied Materials & Interfaces 2015, 7 (14), 7566-7575. 32. Zhao, C.; Bai, Z.; Liu, X.; Zhang, Y.; Zou, B.; Zhong, H., Small GSH-Capped CuInS2 Quantum Dots: MPA-Assisted Aqueous Phase Transfer and Bioimaging Applications. ACS Applied Materials & Interfaces 2015, 7 (32), 17623-17629. 33. Lin, B.; Yao, X.; Zhu, Y.; Shen, J.; Yang, X.; Jiang, H.; Zhang, X., Multifunctional manganese-doped core-shell quantum dots for magnetic resonance and fluorescence imaging of cancer cells. New Journal of Chemistry 2013, 37 (10), 3076-3083. 34. Lin, Z.; Fei, X.; Ma, Q.; Gao, X.; Su, X., CuInS2 quantum dots@silica near-infrared fluorescent nanoprobe for cell imaging. New Journal of Chemistry 2014, 38 (1), 90-96. 35. Shen, J.; Li, Y.; Zhu, Y.; Yang, X.; Yao, X.; Li, J.; Huang, G.; Li, C., Multifunctional gadolinium-labeled silica-coated Fe3O4 and CuInS2 nanoparticles as a platform for in vivo tri-modality magnetic resonance and fluorescence imaging. Journal of Materials Chemistry B 2015, 3 (14), 2873-2882. 36. Mandal, G.; Darragh, M.; Wang, Y. A.; Heyes, C. D., Cadmium-Free Quantum Dots as Time-Gated Bioimaging Probes in Highly-Autofluorescent Human Breast Cancer Cells. Chemical communications (Cambridge, England) 2013, 49 (6), 624-626. 37. Yong, K.-T.; Roy, I.; Hu, R.; Ding, H.; Cai, H.; Zhu, J.; Zhang, X.; Bergey, E. J.; Prasad, P. N., Synthesis of ternary CuInS2/ZnS quantum dot bioconjugates and their applications for targeted cancer bioimaging. Integrative Biology 2010, 2 (2-3), 121-129. 38. Jeong Yu, L.; Dong Heon, N.; Mi Hwa, O.; Youngsun, K.; Hyung Seok, C.; Duk Young, J.; Chan Beum, P.; Yoon Sung, N., Serum-stable quantum dot--protein hybrid nanocapsules for optical bio-imaging. Nanotechnology 2014, 25 (17), 175702. 39. Liu, Z.; Chen, N.; Dong, C.; Li, W.; Guo, W.; Wang, H.; Wang, S.; Tan, J.; Tu, Y.; Chang, J., Facile Construction of Near Infrared Fluorescence Nanoprobe with Amphiphilic Protein-Polymer Bioconjugate for Targeted Cell Imaging. ACS Applied Materials & Interfaces 2015, 7 (34), 18997-19005. 40. Arshad, A.; Chen, H.; Bai, X.; Xu, S.; Wang, L., One-Pot Aqueous Synthesis of Highly Biocompatible Near Infrared CuInS2 Quantum Dots for Target Cell Imaging. Chinese Journal of Chemistry 2016, 34 (6), 576-582. 41. Li, L.; Daou, T. J.; Texier, I.; Kim Chi, T. T.; Liem, N. Q.; Reiss, P., Highly Luminescent CuInS2/ZnS Core/Shell Nanocrystals: Cadmium-Free Quantum Dots for In Vivo Imaging. Chemistry of Materials 2009, 21 (12), 2422-2429. 42. Pons, T.; Pic, E.; Lequeux, N.; Cassette, E.; Bezdetnaya, L.; Guillemin, F.; Marchal, F.; Dubertret, B., Cadmium-Free CuInS2/ZnS Quantum Dots for Sentinel Lymph Node Imaging with Reduced Toxicity. ACS Nano 2010, 4 (5), 2531-2538. 43. Ding, K.; Jing, L.; Liu, C.; Hou, Y.; Gao, M., Magnetically engineered Cd-free quantum dots as dual-modality probes for fluorescence/magnetic resonance imaging of tumors. Biomaterials 2014, 35 (5), 1608-1617. 44. Liu, S.; Zhang, H.; Qiao, Y.; Su, X., One-pot synthesis of ternary CuInS2 quantum dots with near-infrared fluorescence in aqueous solution. RSC Advances 2012, 2 (3), 819-825. 45. Liu, L.; Hu, R.; Law, W.-C.; Roy, I.; Zhu, J.; Ye, L.; Hu, S.; Zhang, X.; Yong, K.-T., Optimizing the synthesis of red- and near-infrared CuInS2 and AgInS2 semiconductor nanocrystals for bioimaging. Analyst 2013, 138 (20), 6144-6153. 46. Gao, X.; Liu, Z.; Lin, Z.; Su, X., CuInS2 quantum dots/poly(l-glutamic acid)-drug conjugates for drug delivery and cell imaging. Analyst 2014, 139 (4), 831-836. 47. Yang, W.; Guo, W.; Gong, X.; Zhang, B.; Wang, S.; Chen, N.; Yang, W.; Tu, Y.; Fang, X.; Chang, J., Facile Synthesis of Gd–Cu–In–S/ZnS Bimodal Quantum Dots with Optimized Properties for Tumor Targeted Fluorescence/MR In Vivo Imaging. ACS Applied Materials & Interfaces 2015, 7 (33), 18759-18768. 48. Guo, W.; Sun, X.; Jacobson, O.; Yan, X.; Min, K.; Srivatsan, A.; Niu, G.; Kiesewetter, D. O.; Chang, J.; Chen, X., Intrinsically Radioactive [64Cu]CuInS/ZnS Quantum Dots for PET and Optical Imaging: Improved Radiochemical Stability and Controllable Cerenkov Luminescence. ACS Nano 2015, 9 (1), 488-495. 49. Choi, H. S.; Kim, Y.; Park, J. C.; Oh, M. H.; Jeon, D. Y.; Nam, Y. S., Highly luminescent, off-stoichiometric CuxInyS2/ZnS quantum dots for near-infrared fluorescence bio-imaging. RSC Advances 2015, 5 (54), 43449-43455. 50. Vinayagam, J.; Chen, G.-R.; Huang, T.-Y.; Ho, J.-H.; Ling, Y.-C.; Ou, K.-L.; Chang, J.-Y., Aqueous synthesis of CuInZnS/ZnS quantum dots by using dual stabilizers: A targeting nanoprobe for cell imaging. Materials Letters 2016, 173, 242-247. 51. Girma, W. M.; Fahmi, M. Z.; Permadi, A.; Abate, M. A.; Chang, J.-Y., Synthetic strategies and biomedical applications of I-III-VI ternary quantum dots. Journal of Materials Chemistry B 2017. 52. Pan, D.; Weng, D.; Wang, X.; Xiao, Q.; Chen, W.; Xu, C.; Yang, Z.; Lu, Y., Alloyed semiconductor nanocrystals with broad tunable band gaps. Chemical Communications 2009, (28), 4221-4223. 53. Nam, D.-E.; Song, W.-S.; Yang, H., Noninjection, one-pot synthesis of Cu-deficient CuInS 2/ZnS core/shell quantum dots and their fluorescent properties. Journal of colloid and interface science 2011, 361 (2), 491-496. 54. Uehara, M.; Watanabe, K.; Tajiri, Y.; Nakamura, H.; Maeda, H., Synthesis of Cu In S 2 fluorescent nanocrystals and enhancement of fluorescence by controlling crystal defect. The Journal of chemical physics 2008, 129 (13), 134709. 55. Liu, S.; Zhang, H.; Qiao, Y.; Su, X., One-pot synthesis of ternary CuInS 2 quantum dots with near-infrared fluorescence in aqueous solution. Rsc Advances 2012, 2 (3), 819-825. 56. Gardner, J. S.; Shurdha, E.; Wang, C.; Lau, L. D.; Rodriguez, R. G.; Pak, J. J., Rapid synthesis and size control of CuInS2 semi-conductor nanoparticles using microwave irradiation. Journal of Nanoparticle Research 2008, 10 (4), 633-641. 57. Li, T.-L.; Teng, H., Solution synthesis of high-quality CuInS 2 quantum dots as sensitizers for TiO 2 photoelectrodes. Journal of Materials Chemistry 2010, 20 (18), 3656-3664. 58. Chang, J.; Waclawik, E. R., Controlled synthesis of CuInS2, Cu2SnS3 and Cu2ZnSnS4 nano-structures: insight into the universal phase-selectivity mechanism. CrystEngComm 2013, 15 (28), 5612-5619. 59. Pawley, J. B., Fundamental limits in confocal microscopy. In Handbook of biological confocal microscopy, Springer: 2006; pp 20-42. 60. Yu, S.-J.; Kang, M.-W.; Chang, H.-C.; Chen, K.-M.; Yu, Y.-C., Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. Journal of the American Chemical Society 2005, 127 (50), 17604-17605. 61. He, H.; Xie, C.; Ren, J., Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging. Analytical Chemistry 2008, 80 (15), 5951-5957. 62. Tarpani, L.; Ruhlandt, D.; Latterini, L.; Haehnel, D.; Gregor, I.; Enderlein, J. r.; Chizhik, A. I., Photoactivation of Luminescent Centers in Single SiO2 Nanoparticles. Nano letters 2016, 16 (7), 4312-4316. 63. Murray, C. B.; Norris, D. J.; Bawendi, M. G., Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society 1993, 115 (19), 8706-8715. 64. Peltonen, L.; Koistinen, P.; Karjalainen, M.; Häkkinen, A.; Hirvonen, J., The effect of cosolvents on the formulation of nanoparticles from low-molecular-weight poly(I)lactide. AAPS PharmSciTech 2002, 3 (4), 52. 65. Smith, A. M.; Duan, H.; Mohs, A. M.; Nie, S., Bioconjugated Quantum Dots for In Vivo Molecular and Cellular Imaging. Advanced drug delivery reviews 2008, 60 (11), 1226-1240. 66. Booth, M.; Peel, R.; Partanen, R.; Hondow, N.; Vasilca, V.; Jeuken, L. J. C.; Critchley, K., Amphipol-encapsulated CuInS2/ZnS quantum dots with excellent colloidal stability. RSC Advances 2013, 3 (43), 20559-20566. 67. Azzazy, H. M. E.; Mansour, M. M. H.; Kazmierczak, S. C., From diagnostics to therapy: Prospects of quantum dots. Clinical Biochemistry 2007, 40 (13–14), 917-927. 68. Chang, E.; Miller, J. S.; Sun, J.; Yu, W. W.; Colvin, V. L.; Drezek, R.; West, J. L., Protease-activated quantum dot probes. Biochemical and Biophysical Research Communications 2005, 334 (4), 1317-1321. 69. Fan, H.; Leve, E. W.; Scullin, C.; Gabaldon, J.; Tallant, D.; Bunge, S.; Boyle, T.; Wilson, M. C.; Brinker, C. J., Surfactant-Assisted Synthesis of Water-Soluble and Biocompatible Semiconductor Quantum Dot Micelles. Nano Letters 2005, 5 (4), 645-648. 70. Jana, N. R., Design and development of quantum dots and other nanoparticles based cellular imaging probe. Physical Chemistry Chemical Physics 2011, 13 (2), 385-396. 71. Mulvaney, P.; Liz-Marzan, L. M.; Giersig, M.; Ung, T., Silica encapsulation of quantum dots and metal clusters. Journal of Materials Chemistry 2000, 10 (6), 1259-1270. 72. Tomczak, N.; Jańczewski, D.; Tagit, O.; Han, M.-Y.; Vancso, G. J., Surface Engineering of Quantum Dots with Designer Ligands. In Surface Design: Applications in Bioscience and Nanotechnology, Wiley-VCH Verlag GmbH & Co. KGaA: 2009; pp 341-361. 73. Liu, S.; Shi, F.; Zhao, X.; Chen, L.; Su, X., 3-Aminophenyl boronic acid-functionalized CuInS2 quantum dots as a near-infrared fluorescence probe for the determination of dopamine. Biosensors and Bioelectronics 2013, 47, 379-384. 74. Barichard, A.; Galstian, T.; Israëli, Y., Influence of CdSe/ZnS Quantum Dots in the Polymerization Process and in the Grating Recording in Acrylate Materials. The Journal of Physical Chemistry B 2010, 114 (46), 14807-14814. 75. Matsuoka, S.-i.; Kikuno, T.; Takagi, K.; Suzuki, M., Poly(ethylene glycol)-induced acceleration of free radical polymerization of methyl methacrylate: effects of highly viscous solvent and kinetic study. Polym J 2010, 42 (5), 368-374. 76. Yu, Q.; Zeng, F.; Zhu, S., Atom Transfer Radical Polymerization of Poly(ethylene glycol) Dimethacrylate. Macromolecules 2001, 34 (6), 1612-1618. 77. Zrazhevskiy, P.; Sena, M.; Gao, X., Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chemical Society Reviews 2010, 39 (11), 4326-4354. 78. Lin, C.-A. J.; Lee, C.-H.; Hsieh, J.-T.; Wang, H.-H.; Li, J. K.; Shen, J.-L.; Chan, W.-H.; Yeh, H.-I.; Chang, W. H., Synthesis of fluorescent metallic nanoclusters toward biomedical application: recent progress and present challenges. J Med Biol Eng 2009, 29 (6), 276-283. 79. Huo, Q., A perspective on bioconjugated nanoparticles and quantum dots. Colloids and Surfaces B: Biointerfaces 2007, 59 (1), 1-10. 80. Zhou, J.; Yang, Y.; Zhang, C.-y., Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chemical reviews 2015, 115 (21), 11669-11717. 81. Chakraborty, A.; Jana, N. R., Clathrin to lipid raft-endocytosis via controlled surface chemistry and efficient perinuclear targeting of nanoparticle. J. Phys. Chem. Lett 2015, 6 (18), 3688-3697. 82. Ruedas-Rama, M. J.; Walters, J. D.; Orte, A.; Hall, E. A., Fluorescent nanoparticles for intracellular sensing: a review. Analytica chimica acta 2012, 751, 1-23. 83. Liu, Y.; Solomon, M.; Achilefu, S., Perspectives and potential applications of nanomedicine in breast and prostate cancer. Medicinal research reviews 2013, 33 (1), 3-32. 84. Ozalp, V. C.; Eyidogan, F.; Oktem, H. A., Aptamer-gated nanoparticles for smart drug delivery. Pharmaceuticals 2011, 4 (8), 1137-1157. 85. Ahmed, E. M., Hydrogel: Preparation, characterization, and applications: A review. Journal of advanced research 2015, 6 (2), 105-121. 86. Koetting, M. C.; Peters, J. T.; Steichen, S. D.; Peppas, N. A., Stimulus-responsive hydrogels: Theory, modern advances, and applications. Materials Science and Engineering: R: Reports 2015, 93, 1-49. 87. Sahiner, N.; Sel, K.; Meral, K.; Onganer, Y.; Butun, S.; Ozay, O.; Silan, C., Hydrogel templated CdS quantum dots synthesis and their characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011, 389 (1), 6-11. 88. Zhang, X.; Ding, S.; Cao, S.; Zhu, A.; Shi, G., Functional surface engineering of quantum dot hydrogels for selective fluorescence imaging of extracellular lactate release. Biosensors and Bioelectronics 2016, 80, 315-322. 89. Saha, S.; Das, G.; Thote, J.; Banerjee, R., Photocatalytic metal–organic framework from CdS quantum dot incubated luminescent metallohydrogel. Journal of the American Chemical Society 2014, 136 (42), 14845-14851. 90. Hardman, R., A Toxicologic Review of Quantum Dots: Toxicity Depends on Physicochemical and Environmental Factors. Environmental Health Perspectives 2006, 114 (2), 165-172. 91. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S., Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science (New York, N.Y.) 2005, 307 (5709), 538-544. 92. Booth, M.; Brown, A. P.; Evans, S. D.; Critchley, K., Determining the Concentration of CuInS2 Quantum Dots from the Size-Dependent Molar Extinction Coefficient. Chemistry of Materials 2012, 24 (11), 2064-2070. 93. Qin, L.; Li, D.; Zhang, Z.; Wang, K.; Ding, H.; Xie, R.; Yang, W., The determination of extinction coefficient of CuInS2, and ZnCuInS3 multinary nanocrystals. Nanoscale 2012, 4 (20), 6360-6364. 94. Yuan, X.; Zhao, J.; Jing, P.; Zhang, W.; Li, H.; Zhang, L.; Zhong, X.; Masumoto, Y., Size- and Composition-Dependent Energy Transfer from Charge Transporting Materials to ZnCuInS Quantum Dots. The Journal of Physical Chemistry C 2012, 116 (22), 11973-11979. 95. Cho, S. J.; Maysinger, D.; Jain, M.; Röder, B.; Hackbarth, S.; Winnik, F. M., Long-Term Exposure to CdTe Quantum Dots Causes Functional Impairments in Live Cells. Langmuir 2007, 23 (4), 1974-1980. 96. Zhang, T.; Stilwell, J. L.; Gerion, D.; Ding, L.; Elboudwarej, O.; Cooke, P. A.; Gray, J. W.; Alivisatos, A. P.; Chen, F. F., Cellular Effect of High Doses of Silica-Coated Quantum Dot Profiled with High Throughput Gene Expression Analysis and High Content Cellomics Measurements. Nano Letters 2006, 6 (4), 800-808. 97. Walling, M. A.; Novak, J. A.; Shepard, J. R. E., Quantum Dots for Live Cell and In Vivo Imaging. International Journal of Molecular Sciences 2009, 10 (2), 441-491. 98. Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N., Probing the Cytotoxicity of Semiconductor Quantum Dots. Nano Letters 2004, 4 (1), 11-18. 99. Lewinski, N.; Colvin, V.; Drezek, R., Cytotoxicity of Nanoparticles. Small 2008, 4 (1), 26-49. 100. Hauck, T. S.; Anderson, R. E.; Fischer, H. C.; Newbigging, S.; Chan, W. C. W., In vivo Quantum-Dot Toxicity Assessment. Small 2010, 6 (1), 138-144. 101. Nel, A.; Xia, T.; Mädler, L.; Li, N., Toxic Potential of Materials at the Nanolevel. Science 2006, 311 (5761), 622. 102. Helgaker;, T.; Jorgensen;, P.; Olsen, J., Molecular Electronic-Structure Theory. Wiley: England, 2000; Vol. 2. 103. Izadi, S.; Anandakrishnan, R.; Onufriev, A. V., Building Water Models: A Different Approach. The Journal of Physical Chemistry Letters 2014, 5 (21), 3863-3871. 104. Akdas, T.; Haderlein, M.; Walter, J.; Apeleo Zubiri, B.; Spiecker, E.; Peukert, W., Continuous synthesis of CuInS2 quantum dots. RSC Advances 2017, 7 (17), 10057-10063. 105. Sun, C.; Gardner, J. S.; Shurdha, E.; Margulieux, K. R.; Westover, R. D.; Lau, L.; Long, G.; Bajracharya, C.; Wang, C.; Thurber, A.; Punnoose, A.; Rodriguez, R. G.; Pak, J. J., A High-Yield Synthesis of Chalcopyrite CuIn Nanoparticles with Exceptional Size Control. Journal of Nanomaterials 2009, 2009, 7. 106. Tomasi, J.; Mennucci, B.; Cammi, R., Quantum Mechanical Continuum Solvation Models. Chemical Reviews 2005, 105 (8), 2999-3094. 107. Kittel, C., Introduction to solid state physics. Wiley: 2013. 108. Krug, H. F.; Wick, P., Nanotoxicology: An Interdisciplinary Challenge. Angewandte Chemie International Edition 2011, 50 (6), 1260-1278. 109. Soenen, S. J.; Rivera-Gil, P.; Montenegro, J.-M.; Parak, W. J.; De Smedt, S. C.; Braeckmans, K., Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 2011, 6 (5), 446-465. 110. Zhao, F.; Zhao, Y.; Liu, Y.; Chang, X.; Chen, C.; Zhao, Y., Cellular Uptake, Intracellular Trafficking, and Cytotoxicity of Nanomaterials. Small 2011, 7 (10), 1322-1337. 111. Jamieson, T.; Bakhshi, R.; Petrova, D.; Pocock, R.; Imani, M.; Seifalian, A. M., Biological applications of quantum dots. Biomaterials 2007, 28 (31), 4717-4732. 112. Li, L.; Pandey, A.; Werder, D. J.; Khanal, B. P.; Pietryga, J. M.; Klimov, V. I., Efficient Synthesis of Highly Luminescent Copper Indium Sulfide-Based Core/Shell Nanocrystals with Surprisingly Long-Lived Emission. Journal of the American Chemical Society 2011, 133 (5), 1176-1179. 113. Ma, Q.; Su, X., Near-infrared quantum dots: synthesis, functionalization and analytical applications. Analyst 2010, 135 (8), 1867-1877. 114. Xie, R.; Rutherford, M.; Peng, X., Formation of High-Quality I−III−VI Semiconductor Nanocrystals by Tuning Relative Reactivity of Cationic Precursors. Journal of the American Chemical Society 2009, 131 (15), 5691-5697. 115. Lees, E. E.; Nguyen, T.-L.; Clayton, A. H. A.; Mulvaney, P., The Preparation of Colloidally Stable, Water-Soluble, Biocompatible, Semiconductor Nanocrystals with a Small Hydrodynamic Diameter. ACS Nano 2009, 3 (5), 1121-1128. 116. Basiruddin, S. K.; Saha, A.; Pradhan, N.; Jana, N. R., Advances in Coating Chemistry in Deriving Soluble Functional Nanoparticle. The Journal of Physical Chemistry C 2010, 114 (25), 11009-11017. 117. Hsu, J.-C.; Huang, C.-C.; Ou, K.-L.; Lu, N.; Mai, F.-D.; Chen, J.-K.; Chang, J.-Y., Silica nanohybrids integrated with CuInS2/ZnS quantum dots and magnetite nanocrystals: multifunctional agents for dual-modality imaging and drug delivery. Journal of Materials Chemistry 2011, 21 (48), 19257-19266. 118. Hoshino, A.; Hanaki, K.-i.; Suzuki, K.; Yamamoto, K., Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. Biochemical and Biophysical Research Communications 2004, 314 (1), 46-53. 119. McNamee, C. E.; Yamamoto, S.; Higashitani, K., Effect of the Physicochemical Properties of Poly(Ethylene Glycol) Brushes on their Binding to Cells. Biophysical Journal 2007, 93 (1), 324-334. 120. Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G., (CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. The Journal of Physical Chemistry B 1997, 101 (46), 9463-9475. 121. Yang, Y. Q.; Zheng, L. S.; Guo, X. D.; Qian, Y.; Zhang, L. J., pH-Sensitive Micelles Self-Assembled from Amphiphilic Copolymer Brush for Delivery of Poorly Water-Soluble Drugs. Biomacromolecules 2011, 12 (1), 116-122. 122. Qin, Z.; Chen, Y.; Zhou, W.; He, X.; Bai, F.; Wan, M., Synthesis and properties of polymer brushes composed of poly(diphenylacetylene) main chain and poly(ethylene glycol) side chains. European Polymer Journal 2008, 44 (11), 3732-3740. 123. Liu, Y.; Wang, W.; Hu, W.; Lu, Z.; Zhou, X.; Li, C. M., Highly sensitive poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] brush-based flow-through microarray immunoassay device. Biomedical Microdevices 2011, 13 (4), 769-777. 124. Jon, S.; Seong, J.; Khademhosseini, A.; Tran, T.-N. T.; Laibinis, P. E.; Langer, R., Construction of Nonbiofouling Surfaces by Polymeric Self-Assembled Monolayers. Langmuir 2003, 19 (24), 9989-9993. 125. Hussain, H.; Mya, K. Y.; He, C., Self-Assembly of Brush-Like Poly[poly(ethylene glycol) methyl ether methacrylate] Synthesized via Aqueous Atom Transfer Radical Polymerization. Langmuir 2008, 24 (23), 13279-13286. 126. Chiag, Y.-C.; Chang, Y.; Chen, W.-Y.; Ruaan, R.-c., Biofouling Resistance of Ultrafiltration Membranes Controlled by Surface Self-Assembled Coating with PEGylated Copolymers. Langmuir 2012, 28 (2), 1399-1407. 127. Han, R.; Yu, M.; Zheng, Q.; Wang, L.; Hong, Y.; Sha, Y., A Facile Synthesis of Small-Sized, Highly Photoluminescent, and Monodisperse CdSeS QD/SiO2 for Live Cell Imaging. Langmuir 2009, 25 (20), 12250-12255. 128. Graf, C.; Dembski, S.; Hofmann, A.; Rühl, E., A General Method for the Controlled Embedding of Nanoparticles in Silica Colloids. Langmuir 2006, 22 (13), 5604-5610. 129. Darbandi, M.; Thomann, R.; Nann, T., Single Quantum Dots in Silica Spheres by Microemulsion Synthesis. Chemistry of Materials 2005, 17 (23), 5720-5725. 130. Qu, L.; Peng, X., Control of Photoluminescence Properties of CdSe Nanocrystals in Growth. Journal of the American Chemical Society 2002, 124 (9), 2049-2055. 131. Manna, L.; Scher, E. C.; Li, L.-S.; Alivisatos, A. P., Epitaxial Growth and Photochemical Annealing of Graded CdS/ZnS Shells on Colloidal CdSe Nanorods. Journal of the American Chemical Society 2002, 124 (24), 7136-7145. 132. Ivanov, S. A.; Piryatinski, A.; Nanda, J.; Tretiak, S.; Zavadil, K. R.; Wallace, W. O.; Werder, D.; Klimov, V. I., Type-II Core/Shell CdS/ZnSe Nanocrystals: Synthesis, Electronic Structures, and Spectroscopic Properties. Journal of the American Chemical Society 2007, 129 (38), 11708-11719. 133. Bagaria, H. G.; Kini, G. C.; Wong, M. S., Electrolyte Solutions Improve Nanoparticle Transfer from Oil to Water. The Journal of Physical Chemistry C 2010, 114 (47), 19901-19907. 134. Gedanken, A., Using sonochemistry for the fabrication of nanomaterials. Ultrasonics Sonochemistry 2004, 11 (2), 47-55. 135. Zhu, J. J.; Xu, S.; Wang, H.; Zhu, J. M.; Chen, H. Y., Sonochemical Synthesis of CdSe Hollow Spherical Assemblies Via an In-Situ Template Route. Advanced Materials 2003, 15 (2), 156-159. 136. Vinatoru, M.; Bartha, E.; Badea, F.; Luche, J. L., Sonochemical and thermal redox reactions of triphenylmethane and triphenylmethyl carbinol in nitrobenzene. Ultrasonics Sonochemistry 1998, 5 (1), 27-31. 137. Suslick, K. S.; Gawienowski, J. J.; Schubert, P. F.; Wang, H. H., Sonochemistry in non-aqueous liquids. Ultrasonics 1984, 22 (1), 33-36. 138. Margulis, M. A., Fundamental problems of sonochemistry and cavitation. Ultrasonics Sonochemistry 1994, 1 (2), S87-S90. 139. Dang, F.; Enomoto, N.; Hojo, J.; Enpuku, K., Sonochemical synthesis of monodispersed magnetite nanoparticles by using an ethanol–water mixed solvent. Ultrasonics Sonochemistry 2009, 16 (5), 649-654. 140. Dalvi, S. V.; Dave, R. N., Analysis of nucleation kinetics of poorly water-soluble drugs in presence of ultrasound and hydroxypropyl methyl cellulose during antisolvent precipitation. International Journal of Pharmaceutics 2010, 387 (1–2), 172-179. 141. Doktycz, S. J.; Suslick, K. S., "The Effects of Ultrasound on Solids" in Advances in Sonochemistry. T.J., M. JAI Press: New York, 1990; Vol. 1, p 247. 142. Vogel, A.; Lauterborn, W.; Timm, R., Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. Journal of Fluid Mechanics 2006, 206, 299-338. 143. Zeiger, B. W.; Suslick, K. S., Sonofragmentation of Molecular Crystals. Journal of the American Chemical Society 2011, 133 (37), 14530-14533. 144. Madigan, N. A.; Hagan, C. R. S.; Zhang, H.; Coury, L. A., Effects of sonication on electrode surfaces and metal particles. Ultrasonics Sonochemistry 1996, 3 (3), S239-S247. 145. Jafari, V.; Allahverdi, A.; Vafaei, M., Ultrasound-assisted synthesis of colloidal nanosilica from silica fume: Effect of sonication time on the properties of product. Advanced Powder Technology 2014, 25 (5), 1571-1577. 146. Luque de Castro, M. D.; Priego-Capote, F., Ultrasound-assisted preparation of liquid samples. Talanta 2007, 72 (2), 321-334. 147. Haldorai, Y.; Nguyen, V. H.; Shim, J.-J., Synthesis of polyaniline/Q-CdSe composite via ultrasonically assisted dynamic inverse emulsion polymerization. Colloid and Polymer Science 2011, 289 (7), 849-854. 148. Cheng, Q.; Debnath, S.; Gregan, E.; Byrne, H. J., Ultrasound-Assisted SWNTs Dispersion: Effects of Sonication Parameters and Solvent Properties. The Journal of Physical Chemistry C 2010, 114 (19), 8821-8827. 149. Nann, T., Phase-transfer of CdSe@ZnS quantum dots using amphiphilic hyperbranched polyethylenimine. Chemical Communications 2005, (13), 1735-1736. 150. Niemann, B.; Veit, P.; Sundmacher, K., Nanoparticle Precipitation in Reverse Microemulsions: Particle Formation Dynamics and Tailoring of Particle Size Distributions. Langmuir 2008, 24 (8), 4320-4328. 151. Entezari, M. H.; Ghows, N., Micro-emulsion under ultrasound facilitates the fast synthesis of quantum dots of CdS at low temperature. Ultrasonics Sonochemistry 2011, 18 (1), 127-134. 152. Ghows, N.; Entezari, M. H., Fast and easy synthesis of core–shell nanocrystal (CdS/TiO2) at low temperature by micro-emulsion under ultrasound. Ultrasonics Sonochemistry 2011, 18 (2), 629-634. 153. Shi, L.; Pei, C.; Li, Q., Ordered arrays of shape tunable CuInS2 nanostructures, from nanotubes to nano test tubes and nanowires. Nanoscale 2010, 2 (10), 2126-2130. 154. Kruszynska, M.; Borchert, H.; Parisi, J.; Kolny-Olesiak, J., Synthesis and Shape Control of CuInS2 Nanoparticles. Journal of the American Chemical Society 2010, 132 (45), 15976-15986. 155. Mathey, K., Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. The Journal of Chemical Physics 2014, 140 (8), 084106. 156. Chang, J.-Y.; Cheng, C.-Y., Facile one-pot synthesis of copper sulfide-metal chalcogenide anisotropic heteronanostructures in a noncoordinating solvent. Chemical Communications 2011, 47 (32), 9089-9091. 157. Belenguer, A. M.; Lampronti, G. I.; Cruz-Cabeza, A. J.; Hunter, C. A.; Sanders, J. K. M., Solvation and surface effects on polymorph stabilities at the nanoscale. Chemical Science 2016, 7 (11), 6617-6627. 158. Vasconcelos, T.; Sarmento, B.; Costa, P., Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug discovery today 2007, 12 (23), 1068-1075. 159. Chiou, W. L.; Riegelman, S., Pharmaceutical applications of solid dispersion systems. Journal of pharmaceutical sciences 1971, 60 (9), 1281-1302. 160. Mejia, J.; Valembois, V.; Piret, J.-P.; Tichelaar, F.; van Huis, M.; Masereel, B.; Toussaint, O.; Delhalle, J.; Mekhalif, Z.; Lucas, S., Are stirring and sonication pre-dispersion methods equivalent for in vitro toxicology evaluation of SiC and TiC? Journal of Nanoparticle Research 2012, 14 (4), 815. 161. Suslick, K. S.; Price, G., J., Applications of ultrasound to materials chemistry. Annual Review of Materials Science 1999, 29, 295-326. 162. Reddy, S.; Fogler, H., Emulsion stability of acoustically formed emulsions. The Journal of Physical Chemistry 1980, 84 (12), 1570-1575. 163. Ren, C.; Zhang, J.; Chen, M.; Yang, Z., Self-assembling small molecules for the detection of important analytes. Chemical Society Reviews 2014, 43 (21), 7257-7266. 164. Tang, F.; Wang, C.; Wang, J.; Wang, X.; Li, L., Fluorescent Organic Nanoparticles with Enhanced Fluorescence by Self-Aggregation and their Application to Cellular Imaging. ACS Applied Materials & Interfaces 2014, 6 (20), 18337-18343. 165. Yang, Y.; Wang, X.; Cui, Q.; Cao, Q.; Li, L., Self-Assembly of Fluorescent Organic Nanoparticles for Iron(III) Sensing and Cellular Imaging. ACS Applied Materials & Interfaces 2016, 8 (11), 7440-7448. 166. Pilotek, S.; Tabellion, F.; Schär, S.; Steingröver, K., Dispersing Nanoparticles–The Key to Application. 167. Bihari, P.; Vippola, M.; Schultes, S.; Praetner, M.; Khandoga, A. G.; Reichel, C. A.; Coester, C.; Tuomi, T.; Rehberg, M.; Krombach, F., Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Particle and Fibre Toxicology 2008, 5 (1), 14. 168. Walling, M. A.; Novak, J. A.; Shepard, J. R., Quantum dots for live cell and in vivo imaging. International journal of molecular sciences 2009, 10 (2), 441-491. 169. Yu, K.; Zaman, B.; Singh, S.; Wang, D.; Ripmeester, J. A., The effect of dispersion media on photoluminescence of colloidal CdSe nanocrystals synthesized from TOP. Chemistry of materials 2005, 17 (10), 2552-2561. 170. Acevedo, D.; Abruna, H. D., Electron-transfer study and solvent effects on the formal potential of a redox-active self-assembling monolayer. The Journal of Physical Chemistry 1991, 95 (23), 9590-9594.
|