[1] 狩.浩志, 【技術講座】電池開發呈多樣化,更加注重安全性能. NIKKEI ELECTRONICS TAIWAN EDITION: 2010.
[2] 黃俊誠;陳藹然, 鋰電池Lithium Battery. 科學Online - 科技部高瞻自然科學教學資源平台 2009.
[3] 美緒, 西., 鋰電池發展史. 日經技術在線 2015.
[4] 林振華、林振富, 充電式鋰離子電池之材料與應用.
[5] Song, M.-K.;Park, S.;Alamgir, F. M.;Cho, J.;Liu, M., Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Materials Science and Engineering: R: Reports 2011, 72 (11), 203-252.
[6] Goodenough, J. B.;Park, K.-S., The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society 2013, 135 (4), 1167-1176.
[7] Julien, C. M.;Mauger, A.;Zaghib, K.;Groult, H., Comparative issues of cathode materials for Li-ion batteries. Inorganics 2014, 2 (1), 132-154.
[8] Zheng, J.;Zheng, H.;Wang, R.;Ben, L.;Lu, W.;Chen, L.;Chen, L.;Li, H., 3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries. Physical Chemistry Chemical Physics 2014, 16 (26), 13229-13238.
[9] Whittingham, M. S., Lithium batteries and cathode materials. Chemical reviews 2004, 104 (10), 4271-4302.
[10] Johnson, C.;Li, N.;Vaughey, J.;Hackney, S.;Thackeray, M., Lithium–manganese oxide electrodes with layered–spinel composite structures xLi 2 MnO 3·(1− x) Li 1+ y Mn 2− y O 4 (0< x< 1, 0⩽ y⩽ 0.33) for lithium batteries. Electrochemistry communications 2005, 7 (5), 528-536.
[11] Ji, X.;Lee, K. T.;Nazar, L. F., A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature materials 2009, 8 (6), 500-506.
[12] Etacheri, V.;Marom, R.;Elazari, R.;Salitra, G.;Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 2011, 4 (9), 3243-3262.
[13] Ellis, B. L.;Lee, K. T.;Nazar, L. F., Positive electrode materials for Li-ion and Li-batteries. Chemistry of Materials 2010, 22 (3), 691-714.
[14] Balaish, M.;Kraytsberg, A.;Ein-Eli, Y., A critical review on lithium–air battery electrolytes. Physical Chemistry Chemical Physics 2014, 16 (7), 2801-2822.
[15] Mizushima, K.;Jones, P.;Wiseman, P.;Goodenough, J. B., LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin 1980, 15 (6), 783-789.
[16] Fergus, J. W., Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources 2010, 195 (4), 939-954.
[17] Huang, Y.;Chen, J.;Ni, J.;Zhou, H.;Zhang, X., A modified ZrO 2-coating process to improve electrochemical performance of Li (Ni 1/3 Co 1/3 Mn 1/3) O 2. Journal of Power Sources 2009, 188 (2), 538-545.
[18] Li, H.;Jin, J.;Wei, J.;Zhou, Z.;Yan, J., Fast synthesis of core-shell LiCoPO 4/C nanocomposite via microwave heating and its electrochemical Li intercalation performances. Electrochemistry Communications 2009, 11 (1), 95-98.
[19] Qing, C.;Bai, Y.;Yang, J.;Zhang, W., Enhanced cycling stability of LiMn 2 O 4 cathode by amorphous FePO 4 coating. Electrochimica Acta 2011, 56 (19), 6612-6618.
[20] Şahan, H.;Göktepe, H.;Patat, Ş.;Ülgen, A., Effect of the Cr 2 O 3 coating on electrochemical properties of spinel LiMn 2 O 4 as a cathode material for lithium battery applications. Solid State Ionics 2010, 181 (31), 1437-1444.
[21] Walz, K. A.;Johnson, C. S.;Genthe, J.;Stoiber, L. C.;Zeltner, W. A.;Anderson, M. A.;Thackeray, M. M., Elevated temperature cycling stability and electrochemical impedance of LiMn 2 O 4 cathodes with nanoporous ZrO 2 and TiO 2 coatings. Journal of power sources 2010, 195 (15), 4943-4951.
[22] Şahan, H.;Göktepe, H.;Patat, Ş., A novel method to improve the electrochemical performance of LiMn2O4 cathode active material by CaCO3 surface coating. Journal of Materials Science & Technology 2011, 27 (5), 415-420.
[23] Wang, S.;Zhou, C.;Zhou, Q.;Ni, G.;Wu, J., Preparation of LiFePO 4/C in a reductive atmosphere generated by windward aerobic decomposition of glucose. Journal of Power Sources 2011, 196 (11), 5143-5146.
[24] Oh, S. M.;Oh, S. W.;Yoon, C. S.;Scrosati, B.;Amine, K.;Sun, Y. K., High‐performance carbon‐LiMnPO4 nanocomposite cathode for lithium batteries. Advanced Functional Materials 2010, 20 (19), 3260-3265.
[25] Saravanan, K.;Vittal, J. J.;Reddy, M.;Chowdari, B. V.;Balaya, P., Storage performance of LiFe 1− x Mn x PO 4 nanoplates (x= 0, 0.5, and 1). Journal of Solid State Electrochemistry 2010, 14 (10), 1755-1760.
[26] Kim, J.;Park, Y.-U.;Seo, D.-H.;Kim, J.;Kim, S.-W.;Kang, K., Mg and Fe Co-doped Mn based olivine cathode material for high power capability. Journal of the Electrochemical Society 2011, 158 (3), A250-A254.
[27] Saravanan, K.;Ramar, V.;Balaya, P.;Vittal, J. J., Li (Mn x Fe 1− x) PO 4/C (x= 0.5, 0.75 and 1) nanoplates for lithium storage application. Journal of Materials Chemistry 2011, 21 (38), 14925-14935.
[28] Li, G.;Azuma, H.;Tohda, M., LiMnPO4 as the cathode for lithium batteries. Electrochemical and Solid-State Letters 2002, 5 (6), A135-A137.
[29] Amine, K.;Yasuda, H.;Yamachi, M., Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries. Electrochemical and Solid-State Letters 2000, 3 (4), 178-179.
[30] Wolfenstine, J.;Allen, J., Ni 3+/Ni 2+ redox potential in LiNiPO 4. Journal of Power Sources 2005, 142 (1), 389-390.
[31] Thackeray, M.;David, W.;Bruce, P.;Goodenough, J., Lithium insertion into manganese spinels. Materials Research Bulletin 1983, 18 (4), 461-472.
[32] Jahn, H. A.;Teller, E., "Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy," in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1937, pp. 220-235.
[33] Goodenough, J. B.;Loeb, A. L., Theory of ionic ordering, crystal distortion, and magnetic exchange due to covalent forces in spinels. Physical Review 1955, 98 (2), 391.
[34] Aurbach, D.;Levi, M.;Gamulski, K.;Markovsky, B.;Salitra, G.;Levi, E.;Heider, U.;Heider, L.;Oesten, R., Capacity fading of Li x Mn 2 O 4 spinel electrodes studied by XRD and electroanalytical techniques. Journal of Power Sources 1999, 81, 472-479.
[35] Xia, Y.;Zhou, Y.;Yoshio, M., Capacity Fading on Cycling of 4 V Li/LiMn2 O 4 Cells. Journal of The Electrochemical Society 1997, 144 (8), 2593-2600.
[36] Kim, J.-H.;Myung, S.-T.;Yoon, C.;Kang, S.;Sun, Y.-K., Comparative study of LiNi0. 5Mn1. 5O4-δ and LiNi0. 5Mn1. 5O4 cathodes having two crystallographic structures: Fd3m and P4332. Chem. Mater 2004, 16 (5), 906-914.
[37] Molenda, J.;Marzec, J.;Świerczek, K.;Ojczyk, W.;Ziemnicki, M.;Molenda, M.;Drozdek, M.;Dziembaj, R., The effect of 3d substitutions in the manganese sublattice on the charge transport mechanism and electrochemical properties of manganese spinel. Solid State Ionics 2004, 171 (3), 215-227.
[38] Ohzuku, T.;Takeda, S.;Iwanaga, M., Solid-state redox potentials for Li [Me 1/2 Mn 3/2] O 4 (Me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries. Journal of Power Sources 1999, 81, 90-94.
[39] R. D. Rauh, K. M. A., G. F. Pearson, J. K. Surprenant and S. B. Brummer, A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte Journal of The Electrochemical Society 1979, vol. 126.
[40] Nazar, L. F.;Ji, X.;Lee, K. T., A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature Materials 2009, 8 (6), 500-506.
[41] Hagen, M.;Hanselmann, D.;Ahlbrecht, K.;Maça, R.;Gerber, D.;Tübke, J., Lithium–Sulfur Cells: The Gap between the State-of-the-Art and the Requirements for High Energy Battery Cells. Advanced Energy Materials 2015, 5 (16), n/a-n/a.
[42] Zanini, M.;Basu, S.;Fischer, J., Alternate synthesis and reflectivity spectrum of stage 1 lithium—graphite intercalation compound. Carbon 1978, 16 (3), 211-212.
[43] ink, B. T. L., "Rechargeable battery " US Patent, 1981.
[44] Su, F.;Poh, C. K.;Chen, J. S.;Xu, G.;Wang, D.;Li, Q.;Lin, J.;Lou, X. W., Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ. Sci. 2011, 4 (3), 717-724.
[45] Petkov, V.;Timmons, A.;Camardese, J.;Ren, Y., Li insertion in ball-milled graphitic carbon studied by total x-ray diffraction. Journal of Physics: Condensed Matter 2011, 23 (43), 435003.
[46] 林振華、林振富, 充電式鋰離子電池之材料與應用.
[47] 呂學隆, 鋰電池電解液產業在兩岸的發展現況. 工業材料雜誌 2011, 289.[48] Goodenough, J. B.;Kim, Y., Challenges for rechargeable Li batteries. Chemistry of Materials 2010, 22 (3), 587-603.
[49] Peled, E., The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model. J. Electrochem. Soc. 1979, 126, 2047.
[50] Peled E., G. D., Ardel G., Menachem C., Bar-Tow D. and;V, E., Role of sei in lithium and lithium ion batteries Mat. Res. Soc. Symp. 1995, 393, 209-221.
[51] Peled E., G. D. a. P. J., Anode/Electrolyte Interface. In Handbook of Battery Materials [Online] O., B. J., Ed. 1998.
[52] Peled E., M. C., Bar-Tow D. and Melman A., improved graphite anode for lithium-ion batteries: Chemically bonded solid electrolyte interface and nanochannel formation J. Electrochem. Soc. 1996, 143 (1), L4-L7.
[53] Liu, M.;Ye, F.;Li, W.;Li, H.;Zhang, Y., Chemical routes toward long-lasting lithium/sulfur cells. Nano Research 2016, 9 (1), 94-116.
[54] Lithium-Ion_Batteries_Solid-Electrolyte_Interphase. Balbuena, P. B.;Wang, Y., Eds. Imperial College Press: 2004.
[55] 馬振基, 鋰離子電池原理與技術. 五南圖書出版: 2010.
[56] Wild, M.;O'Neill, L.;Zhang, T.;Purkayastha, R.;Minton, G.;Marinescu, M.;Offer, G. J., Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci. 2015, 8 (12), 3477-3494.
[57] Yeon, J.-T.;Jang, J.-Y.;Han, J.-G.;Cho, J.;Lee, K. T.;Choi, N.-S., Raman Spectroscopic and X-ray Diffraction Studies of Sulfur Composite Electrodes during Discharge and Charge. Journal of The Electrochemical Society 2012, 159 (8), A1308-A1314.
[58] Mikhaylik, Y. V.;Akridge, J. R., Polysulfide Shuttle Study in the Li/S Battery System. Journal of The Electrochemical Society 2004, 151 (11), A1969-A1976.
[59] 洪惠鈺, "以溶解沉澱法製備高導電度硫/聚丙烯腈-碳複合物於鋰硫電池正極之應用," 碩士, 化學工程系, 國立台灣科技大學, 2016.[60] Urbonaite, S.;Poux, T.;Novák, P., Progress Towards Commercially Viable Li-S Battery Cells. Advanced Energy Materials 2015, 5 (16), 1500118.
[61] Zegeye, T. A., "Design, Characterization, and Fabrication of Sulfur Nanocomposite Cathode Material for High Performance Lithium-Sulfur Batteries," Doctoral Dissertation, Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 2017.
[62] Yin, Y. X.;Xin, S.;Guo, Y. G.;Wan, L. J., Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angewandte Chemie International Edition 2013, 52 (50), 13186-13200.
[63] Ji, L.;Rao, M.;Zheng, H.;Zhang, L.;Li, Y.;Duan, W.;Guo, J.;Cairns, E. J.;Zhang, Y., Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. Journal of the American Chemical Society 2011, 133 (46), 18522-18525.
[64] Wang, H.;Yang, Y.;Liang, Y.;Robinson, J. T.;Li, Y.;Jackson, A.;Cui, Y.;Dai, H., Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano letters 2011, 11 (7), 2644-2647.
[65] Zhao, Q.;Hu, X.;Zhang, K.;Zhang, N.;Hu, Y.;Chen, J., Sulfur nanodots electrodeposited on Ni foam as high-performance cathode for Li–S batteries. Nano letters 2015, 15 (1), 721-726.
[66] Wang, D.;Zhang, W.;Zheng, W.;Cui, X.;Rojo, T.;Zhang, Q., Towards High‐Safe Lithium Metal Anodes: Suppressing Lithium Dendrites via Tuning Surface Energy. Advanced Science 2017, 4 (1).
[67] Aurbach, D.;Pollak, E.;Elazari, R.;Salitra, G.;Kelley, C. S.;Affinito, J., On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. Journal of The Electrochemical Society 2009, 156 (8), A694-A702.
[68] Liang, X.;Wen, Z.;Liu, Y.;Wu, M.;Jin, J.;Zhang, H.;Wu, X., Improved cycling performances of lithium sulfur batteries with LiNO 3-modified electrolyte. Journal of Power Sources 2011, 196 (22), 9839-9843.
[69] Park, M.-S.;Yu, J.-S.;Kim, K. J.;Jeong, G.;Kim, J.-H.;Jo, Y.-N.;Hwang, U.;Kang, S.;Woo, T.;Kim, Y.-J., One-step synthesis of a sulfur-impregnated graphene cathode for lithium–sulfur batteries. Physical Chemistry Chemical Physics 2012, 14 (19), 6796-6804.
[70] Xi, K.;Cao, S.;Peng, X.;Ducati, C.;Kumar, R. V.;Cheetham, A. K., Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulphur batteries. Chem Commun (Camb) 2013, 49 (22), 2192-4.
[71] Kim, J.-S.;Hwang, T. H.;Kim, B. G.;Min, J.;Choi, J. W., A Lithium-Sulfur Battery with a High Areal Energy Density. Advanced Functional Materials 2014, 24 (34), 5359-5367.
[72] Tan, G.;Xu, R.;Xing, Z.;Yuan, Y.;Lu, J.;Wen, J.;Liu, C.;Ma, L.;Zhan, C.;Liu, Q.;Wu, T.;Jian, Z.;Shahbazian-Yassar, R.;Ren, Y.;Miller, D. J.;Curtiss, L. A.;Ji, X.;Amine, K., Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–S batteries. Nature Energy 2017, 2, 17090.
[73] Zegeye, T. A.;Tsai, M.-C.;Cheng, J.-H.;Lin, M.-H.;Chen, H.-M.;Rick, J.;Su, W.-N.;Kuo, C.-F. J.;Hwang, B.-J., Controllable embedding of sulfur in high surface area nitrogen doped three dimensional reduced graphene oxide by solution drop impregnation method for high performance lithium-sulfur batteries. Journal of Power Sources 2017, 353, 298-311.
[74] Xin, S.;Gu, L.;Zhao, N.-H.;Yin, Y.-X.;Zhou, L.-J.;Guo, Y.-G.;Wan, L.-J., Smaller Sulfur Molecules Promise Better Lithium–Sulfur Batteries. Journal of the American Chemical Society 2012, 134 (45), 18510-18513.
[75] Chen, R.;Zhao, T.;Lu, J.;Wu, F.;Li, L.;Chen, J.;Tan, G.;Ye, Y.;Amine, K., Graphene-Based Three-Dimensional Hierarchical Sandwich-type Architecture for High-Performance Li/S Batteries. Nano Letters 2013, 13 (10), 4642-4649.
[76] Yao, H.;Zheng, G.;Hsu, P.-C.;Kong, D.;Cha, J. J.;Li, W.;Seh, Z. W.;McDowell, M. T.;Yan, K.;Liang, Z., Improving lithium-sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface. Nature communications 2014, 5, 3943.
[77] Li, Z.;Jiang, Y.;Yuan, L.;Yi, Z.;Wu, C.;Liu, Y.;Strasser, P.;Huang, Y., A highly ordered meso@ microporous carbon-supported sulfur@ smaller sulfur core–shell structured cathode for Li–S batteries. ACS nano 2014, 8 (9), 9295-9303.
[78] He, G.;Evers, S.;Liang, X.;Cuisinier, M.;Garsuch, A.;Nazar, L. F., Tailoring porosity in carbon nanospheres for lithium–sulfur battery cathodes. ACS nano 2013, 7 (12), 10920-10930.
[79] Xiao, L.;Cao, Y.;Xiao, J.;Schwenzer, B.;Engelhard, M. H.;Saraf, L. V.;Nie, Z.;Exarhos, G. J.;Liu, J., A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium‐sulfur batteries with long cycle life. Advanced Materials 2012, 24 (9), 1176-1181.
[80] Li, Z.;Yuan, L.;Yi, Z.;Liu, Y.;Xin, Y.;Zhang, Z.;Huang, Y., A dual coaxial nanocable sulfur composite for high-rate lithium-sulfur batteries. Nanoscale 2014, 6 (3), 1653-60.
[81] Wang, C.;Wan, W.;Chen, J.-T.;Zhou, H.-H.;Zhang, X.-X.;Yuan, L.-X.;Huang, Y.-H., Dual core–shell structured sulfur cathode composite synthesized by a one-pot route for lithium sulfur batteries. J. Mater. Chem. A 2013, 1 (5), 1716-1723.
[82] Tao, X.;Wang, J.;Ying, Z.;Cai, Q.;Zheng, G.;Gan, Y.;Huang, H.;Xia, Y.;Liang, C.;Zhang, W.;Cui, Y., Strong Sulfur Binding with Conducting Magnéli-Phase TinO2n–1Nanomaterials for Improving Lithium–Sulfur Batteries. Nano Letters 2014, 14 (9), 5288-5294.
[83] Lee, F.;Tsai, M.-C.;Lin, M.-H.;Ni'mah, Y. L.;Hy, S.;Kuo, C.-Y.;Cheng, J.-H.;Rick, J.;Su, W.-N.;Hwang, B.-J., Capacity retention of lithium sulfur batteries enhanced with nano-sized TiO2-embedded polyethylene oxide. J. Mater. Chem. A 2017, 5 (14), 6708-6715.
[84] Chen, W.;Qian, T.;Xiong, J.;Xu, N.;Liu, X.;Liu, J.;Zhou, J.;Shen, X.;Yang, T.;Chen, Y., A new type of multifunctional polar binder: toward practical application of high energy lithium sulfur batteries. Advanced Materials 2017, 29 (12).
[85] Ryu, J. H.;Kim, J. W.;Sung, Y.-E.;Oh, S. M., Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochemical and solid-state letters 2004, 7 (10), A306-A309.
[86] Chen, Z.;Christensen, L.;Dahn, J., Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers. Electrochemistry communications 2003, 5 (11), 919-923.
[87] Eom, J.-Y.;Cao, L.;Wang, C.-Y., "Effect of anode binders on low-temperature performance of Li-ion batteries," in Meeting Abstracts, 2012, pp. 1016-1016.
[88] Guerfi, A.;Kaneko, M.;Petitclerc, M.;Mori, M.;Zaghib, K., LiFePO 4 water-soluble binder electrode for Li-ion batteries. Journal of Power Sources 2007, 163 (2), 1047-1052.
[89] He, M.;Yuan, L.-X.;Zhang, W.-X.;Hu, X.-L.;Huang, Y.-H., Enhanced Cyclability for Sulfur Cathode Achieved by a Water-Soluble Binder. The Journal of Physical Chemistry C 2011, 115 (31), 15703-15709.
[90] Liu, W.-R.;Yang, M.-H.;Wu, H.-C.;Chiao, S.;Wu, N.-L., Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder. Electrochemical and Solid-State Letters 2005, 8 (2), A100-A103.
[91] Li, J.;Lewis, R.;Dahn, J., Sodium carboxymethyl cellulose a potential binder for Si negative electrodes for Li-ion batteries. Electrochemical and Solid-State Letters 2007, 10 (2), A17-A20.
[92] Beattie, S. D.;Larcher, D.;Morcrette, M.;Simon, B.;Tarascon, J.-M., Si electrodes for Li-ion batteries—a new way to look at an old problem. Journal of The Electrochemical Society 2008, 155 (2), A158-A163.
[93] Bridel, J.-S.;Azais, T.;Morcrette, M.;Tarascon, J.-M.;Larcher, D., Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries. Chemistry of materials 2009, 22 (3), 1229-1241.
[94] Seh, Z. W.;Zhang, Q.;Li, W.;Zheng, G.;Yao, H.;Cui, Y., Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder. Chemical Science 2013, 4 (9), 3673.
[95] Wang, H.;Sencadas, V.;Gao, G.;Gao, H.;Du, A.;Liu, H.;Guo, Z., Strong affinity of polysulfide intermediates to multi-functional binder for practical application in lithium–sulfur batteries. Nano Energy 2016, 26, 722-728.
[96] Pan, J.;Xu, G.;Ding, B.;Chang, Z.;Wang, A.;Dou, H.;Zhang, X., PAA/PEDOT:PSS as a multifunctional, water-soluble binder to improve the capacity and stability of lithium–sulfur batteries. RSC Adv. 2016, 6 (47), 40650-40655.
[97] Zhang, S. S., Binder Based on Polyelectrolyte for High Capacity Density Lithium/Sulfur Battery. Journal of the Electrochemical Society 2012, 159 (8), A1226-A1229.
[98] Wang, Q.;Yan, N.;Wang, M.;Qu, C.;Yang, X.;Zhang, H.;Li, X.;Zhang, H., Layer-by-Layer Assembled C/S Cathode with Trace Binder for Li–S Battery Application. ACS Applied Materials & Interfaces 2015, 7 (45), 25002-25006.
[99] Jiao, Y.;Chen, W.;Lei, T.;Dai, L.;Chen, B.;Wu, C.;Xiong, J., A Novel Polar Copolymer Design as a Multi-Functional Binder for Strong Affinity of Polysulfides in Lithium-Sulfur Batteries. Nanoscale Research Letters 2017, 12 (1).
[100] Shen, L.;Shen, L.;Wang, Z.;Chen, L., In Situ Thermally Cross-linked Polyacrylonitrile as Binder for High-Performance Silicon as Lithium Ion Battery Anode. ChemSusChem 2014, 7 (7), 1951-1956.
[101] Luo, L.;Xu, Y.;Zhang, H.;Han, X.;Dong, H.;Xu, X.;Chen, C.;Zhang, Y.;Lin, J., Comprehensive Understanding of High Polar Polyacrylonitrile as an Effective Binder for Li-Ion Battery Nano-Si Anodes. ACS Appl Mater Interfaces 2016, 8 (12), 8154-61.
[102] Kreuz, J. A.;Endrey, A.;Gay, F.;Sroog, C., Studies of thermal cyclizations of polyamic acids and tertiary amine salts. Journal of Polymer Science Part A: Polymer Chemistry 1966, 4 (10), 2607-2616.
[103] Yang, C.-P.;Hsiao, S.-H.;Wu, K.-L., Organosoluble and light-colored fluorinated polyimides derived from 2,3-bis(4-amino-2-trifluoromethylphenoxy)naphthalene and aromatic dianhydrides. Polymer 2003, 44 (23), 7067-7078.
[104] Ratta, V., POLYIMIDES: chemistry & structure-property relationships–literature review. Faculty of Virginia Polytechnic Institute and State University 1999, 3-28.
[105] Tseng, C.-Y.;Ye, Y.-S.;Cheng, M.-Y.;Kao, K.-Y.;Shen, W.-C.;Rick, J.;Chen, J.-C.;Hwang, B.-J., Sulfonated Polyimide Proton Exchange Membranes with Graphene Oxide show Improved Proton Conductivity, Methanol Crossover Impedance, and Mechanical Properties. Advanced Energy Materials 2011, 1 (6), 1220-1224.
[106] Ye, Y.-S.;Rick, J.;Hwang, B.-J., Ionic liquid polymer electrolytes. J. Mater. Chem. A 2013, 1 (8), 2719-2743.
[107] MacFarlane, D. R.;Forsyth, M.;Izgorodina, E. I.;Abbott, A. P.;Annat, G.;Fraser, K., On the concept of ionicity in ionic liquids. Physical Chemistry Chemical Physics 2009, 11 (25), 4962-4967.
[108] Ueno, K.;Tokuda, H.;Watanabe, M., Ionicity in ionic liquids: correlation with ionic structure and physicochemical properties. Physical Chemistry Chemical Physics 2010, 12 (8), 1649-1658.
[109] Tokuda, H.;Hayamizu, K.;Ishii, K.;Susan, M. A. B. H.;Watanabe, M., Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. The Journal of Physical Chemistry B 2004, 108 (42), 16593-16600.
[110] Maier, G.;Meier-Haack, J., Sulfonated aromatic polymers for fuel cell membranes. Fuel cells II 2008, 1-62.
[111] Ruzette, A.-V.;Leibler, L., Block copolymers in tomorrow's plastics. Nature materials 2005, 4 (1), 19-31.
[112] Elabd, Y. A.;Hickner, M. A., Block copolymers for fuel cells. Macromolecules 2010, 44 (1), 1-11.
[113] Shi, Z.;Holdcroft, S., Synthesis and proton conductivity of partially sulfonated poly ([vinylidene difluoride-co-hexafluoropropylene]-b-styrene) block copolymers. Macromolecules 2005, 38 (10), 4193-4201.
[114] Bae, B.;Miyatake, K.;Watanabe, M., Synthesis and properties of sulfonated block copolymers having fluorenyl groups for fuel-cell applications. ACS applied materials & interfaces 2009, 1 (6), 1279-1286.
[115] Elabd, Y. A.;Napadensky, E.;Walker, C. W.;Winey, K. I., Transport properties of sulfonated poly (styrene-b-isobutylene-b-styrene) triblock copolymers at high ion-exchange capacities. Macromolecules 2006, 39 (1), 399-407.
[116] He, Y.;Boswell, P. G.;Bühlmann, P.;Lodge, T. P., Ion gels by self-assembly of a triblock copolymer in an ionic liquid. The Journal of Physical Chemistry B 2007, 111 (18), 4645-4652.
[117] Zhang, S.;Lee, K. H.;Sun, J.;Frisbie, C. D.;Lodge, T. P., Viscoelastic properties, ionic conductivity, and materials design considerations for poly (styrene-b-ethylene oxide-b-styrene)-based ion gel electrolytes. Macromolecules 2011, 44 (22), 8981-8989.
[118] Imaizumi, S.;Kokubo, H.;Watanabe, M., Polymer actuators using ion-gel electrolytes prepared by self-assembly of ABA-triblock copolymers. Macromolecules 2011, 45 (1), 401-409.
[119] Simone, P. M.;Lodge, T. P., Phase behavior and ionic conductivity of concentrated solutions of polystyrene-poly (ethylene oxide) diblock copolymers in an ionic liquid. ACS applied materials & interfaces 2009, 1 (12), 2812-2820.
[120] Ye, Y.-S.;Tseng, C.-Y.;Shen, W.-C.;Wang, J.-S.;Chen, K.-J.;Cheng, M.-Y.;Rick, J.;Huang, Y.-J.;Chang, F.-C.;Hwang, B.-J., A new graphene-modified protic ionic liquid-based composite membrane for solid polymer electrolytes. Journal of Materials Chemistry 2011, 21 (28), 10448.
[121] Grygiel, K.;Lee, J.-S.;Sakaushi, K.;Antonietti, M.;Yuan, J., Thiazolium poly (ionic liquid) s: Synthesis and application as binder for lithium-ion batteries. ACS Macro Letters 2015, 4 (12), 1312-1316.
[122] Lee, J.-S.;Sakaushi, K.;Antonietti, M.;Yuan, J., Poly(ionic liquid) binders as Li+conducting mediators for enhanced electrochemical performance. RSC Adv. 2015, 5 (104), 85517-85522.
[123] von Zamory, J.;Bedu, M.;Fantini, S.;Passerini, S.;Paillard, E., Polymeric ionic liquid nanoparticles as binder for composite Li-ion electrodes. Journal of Power Sources 2013, 240, 745-752.
[124] 程品皓, "鋰離子添加劑之開發," 碩士, 化學工程系, 國立台灣科技大學, 2013.[125] Xu, R.;Belharouak, I.;Li, J.;Zhang, X.;Bloom, I.;Bareño, J., Role of Polysulfides in Self‐Healing Lithium–Sulfur Batteries. Advanced Energy Materials 2013, 3 (7), 833-838.
[126] 李謨霖, "Thermoplastic polyimide 之機械/物理特性研究," 碩士, 有機分高分子所, 國立台北科技大學, 2007.
[127] Al-Ajaj, I. A.;Kareem, A. A., Synthesis and Characterization of Polyimide Thin Films by Thermal Evaporation and Solid State Reactions. Acta Technica Corviniensis-Bulletin of Engineering 2015, 8 (4), 147.
[128] Hsiao, S.-H.;Chen, Y.-J., Structure–property study of polyimides derived from PMDA and BPDA dianhydrides with structurally different diamines. European polymer journal 2002, 38 (4), 815-828.
[129] Wang, D.-W.;Zhou, G.;Li, F.;Wu, K.-H.;Lu, G. Q.;Cheng, H.-M.;Gentle, I. R., A microporous–mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li–S batteries. Physical Chemistry Chemical Physics 2012, 14 (24), 8703.
[130] Gambou-Bosca, A.;Belanger, D., Chemical Mapping and Electrochemical Performance of Manganese Dioxide/Activated Carbon Based Composite Electrode for Asymmetric Electrochemical Capacitor. Journal of the Electrochemical Society 2015, 162 (5), A5115-A5123.
[131] Wang, T.;Shi, P.;Chen, J.;Cheng, S.;Xiang, H., Effects of porous structure of carbon hosts on preparation and electrochemical performance of sulfur/carbon composites for lithium–sulfur batteries. Journal of Nanoparticle Research 2016, 18 (1).
[132] Choi, N.-S.;Ha, S.-Y.;Lee, Y.;Jang, J. Y.;Jeong, M.-H.;Shin, W. C.;Ue, M., Recent Progress on Polymeric Binders for Silicon Anodes in Lithium-Ion Batteries. Journal of Electrochemical Science and Technology 2015, 6 (2), 35-49.
[133] Hagen, M.;Schiffels, P.;Hammer, M.;Dorfler, S.;Tubke, J.;Hoffmann, M. J.;Althues, H.;Kaskel, S., In-Situ Raman Investigation of Polysulfide Formation in Li-S Cells. Journal of the Electrochemical Society 2013, 160 (8), A1205-A1214.
[134] Pascal, T. A.;Wujcik, K. H.;Velasco-Velez, J.;Wu, C.;Teran, A. A.;Kapilashrami, M.;Cabana, J.;Guo, J.;Salmeron, M.;Balsara, N., X-ray absorption spectra of dissolved polysulfides in lithium–sulfur batteries from first-principles. The journal of physical chemistry letters 2014, 5 (9), 1547-1551.
[135] Ye, Y.;Kawase, A.;Song, M.-K.;Feng, B.;Liu, Y.-S.;Marcus, M.;Feng, J.;Cairns, E.;Guo, J.;Zhu, J., X-ray Absorption Spectroscopy Characterization of a Li/S Cell. Nanomaterials 2016, 6 (1), 14.
[136] Li, W.;Yao, H.;Yan, K.;Zheng, G.;Liang, Z.;Chiang, Y.-M.;Cui, Y., The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nature Communications 2015, 6, 7436.
[137] Diao, Y.;Xie, K.;Xiong, S.;Hong, X., Insights into Li-S Battery Cathode Capacity Fading Mechanisms: Irreversible Oxidation of Active Mass during Cycling. Journal of the Electrochemical Society 2012, 159 (11), A1816-A1821.
[138] Koo, B.;Kim, H.;Cho, Y.;Lee, K. T.;Choi, N.-S.;Cho, J., A Highly Cross-Linked Polymeric Binder for High-Performance Silicon Negative Electrodes in Lithium Ion Batteries. Angewandte Chemie International Edition 2012, 51 (35), 8762-8767.
[139] Rodrigues, F.;Galante, D.;do Nascimento, G. M.;Santos, P. S., Interionic Interactions in Imidazolic Ionic Liquids Probed by Soft X-ray Absorption Spectroscopy. The Journal of Physical Chemistry B 2012, 116 (5), 1491-1498.
[140] Godoi, F. C. d.;Wang, D.-W.;Zeng, Q.;Wu, K.-H.;Gentle, I. R., Dependence of LiNO3 decomposition on cathode binders in Li–S batteries. Journal of Power Sources 2015, 288, 13-19.