|
[1] H. Orii, S. Tsuji, T. Kouda, ”Tactile texture recognition using convolutional neural networks for time-series data of pressure and 6-axis acceleration sensor”, IEEE International Conference on Industrial Technology (ICIT), 2017. [2] J. Salamon, B. Rocha, E. Gómez, "Musical genre classification using melody features extracted from polyphonic music signals", IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), 2012. [3] C. H. Lee, C. H. Chou, C. C. Lien, J. C. Fang, “Music genre classification using modulation spectral features and multiple prototype vectors representation”, IEEE 4th International Congress on Image and Signal Processing (CISP), 2011. [4] D. Pradeep Kumar, B. J. Sowmya, K. G. Srinivasa, “A comparative study of classifiers for music genre classification based on feature extractors”, IEEE Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), 2016. [5] K. Hazim, S. Tomas, "Multimodal Genre Classification of TV programs and YouTube Videos", Multimedia Tools and Applications, vol. 63, no. 2, pp. 547-567, 2013. [6] P. Ahrendt, A. Meng, J. Larsen, “Decision time horizon for music genre classification using short time features”, 12th European Signal Processing Conference, 2004. [7] J. M. de Sousa, E. T. Pereira, L. R. Veloso, “A robust music genre classification approach for global and regional music datasets evaluation”, IEEE International Conference on Digital Signal Processing (DSP), 2016. [8] A. B. Chan, A. H. Chun, “Automatic Musical Pattern Feature Extraction Using Convolutional Neural Network”, Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS), 2010. [9] G. Tzanetakis, P. Cook, “Musical genre classification of audio signals”, IEEE Transactions on speech and audio processing, pp. 293–302, 2002. [10] M. Kobayakawa, M. Hoshi, “Musical genre classification of MPEG-4 TwinVQ audio data”, IEEE International Conference on Multimedia and Expo (ICME), 2011. [11] K. C. Hsu, C. S. Lin, T. S. Chi, “Sparse Coding Based Music Genre Classification Using Spectro-Temporal Modulations”, Proceedings of the 17th ISMIR Conference, 2016. [12] T. Nakashika, C. Garcia, T. Takiguchi, “Local-feature-map Integration Using Convolutional Neural Networks for Music Genre Classification”, Interspeech ISCA's 13th Annual Conference, 2012. [13] W. Zhang, W. Lei, X. Xu, X. Xing, “Improved Music Genre Classification with Convolutional Neural Networks”, Interspeech in San Francisco, 2016. [14] B. Hua, F. L. Ma, L. C. Jiao, “Research on Computation of GLCM of Image Texture”, Chinese Journal of Electronics, 2006. [15] GTZAN dataset. http://marsyasweb.appspot.com/download/data_sets/ , Referenced on May 18 th, 2017 [16] J. Dai, W. Liu, H. Zheng, W. Xue, C. Ni, “Semi-supervised Learning of Bottleneck Feature for Music Genre Classification”, Chinese Conference on Pattern Recognition (CCPR), pp. 552-562, 2016. [17] Support vector machine, https://en.wikipedia.org/wiki/Support_vector_machine , Referenced on May 20 th, 2017. [18] GPU development in recent years, http://bkultrasound.com/blog/the-next-generation-of-ultrasound-technology , Referenced on May 20 th, 2017. [19] Typical convolutional neural network architecture, https://en.wikipedia.org/wiki/Convolutional_neural_network , Referenced on May 20 th, 2017. [20] A. Krizhevsky, I. Sutskever, G. E. Hinton. “Imagenet classification with deep convolutional neural networks”, in Advances in neural information processing systems (pp. 1097-1105), 2012. [21] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, A. C. Berg. “Imagenet large scale visual recognition challenge” International Journal of Computer Vision, 115(3), 211-252, 2015. [22] WAVE PCM soundfile format, http://soundfile.sapp.org/doc/WaveFormat/ , Referenced on May 20 th, 2017. [23] Fast Fourier Transform (FFT), https://read01.com/7DA3N4.html , Referenced on May 22 th, 2017. [24] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B. Girshick, S. Guadarrama, T. Darrell, “Caffe: Convolutional architecture for fast feature embedding”, In Proceedings of the ACM International Conference on Multimedia, pp. 675-678, 2014.
|