|
Alush, A., Friedman, A., & Goldberger, J. (2016). Pairwise clustering based on the mutual-information criterion. Neurocomputing, 182, 284-293. doi:http://dx.doi.org/10.1016/j.neucom.2015.12.025 Alzate, C., & Suykens, J. A. K. (2012). Hierarchical kernel spectral clustering. Neural Networks, 35, 21-30. doi:http://dx.doi.org/10.1016/j.neunet.2012.06.007 Cai, D., & Chen, X. (2015). Large Scale Spectral Clustering Via Landmark-Based Sparse Representation. IEEE Transactions on Cybernetics, 45(8), 1669-1680. doi:10.1109/TCYB.2014.2358564 Capocci, A., Servedio, V. D. P., Caldarelli, G., & Colaiori, F. (2005). Detecting communities in large networks. Physica a-Statistical Mechanics and Its Applications, 352(2-4), 669-676. doi:10.1016/j.physa.2004.12.050 Chen, C., Zhang, L., Bu, J., Wang, C., & Chen, W. (2010). Constrained Laplacian Eigenmap for dimensionality reduction. Neurocomputing, 73(4–6), 951-958. doi:http://dx.doi.org/10.1016/j.neucom.2009.08.021 Chen, N., Chen, A., Zhou, L., & Lu, L. (2001). A graph-based clustering algorithm in large transaction databases. Intelligent Data Analysis, 327–338. Retrieved from http://content.iospress.com/articles/intelligent-data-analysis/ida00059 Chen, W. Y., Song, Y., Bai, H., Lin, C. J., & Chang, E. Y. (2011). Parallel Spectral Clustering in Distributed Systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(3), 568-586. doi:10.1109/TPAMI.2010.88 Cheng, J., Qiao, M., Bian, W., & Tao, D. (2011). 3D human posture segmentation by spectral clustering with surface normal constraint. Signal Processing, 91(9), 2204-2212. doi:http://dx.doi.org/10.1016/j.sigpro.2011.04.003 Chifu, A.-G., Hristea, F., Mothe, J., & Popescu, M. (2015). Word sense discrimination in information retrieval: A spectral clustering-based approach. Information Processing & Management, 51(2), 16-31. doi:http://dx.doi.org/10.1016/j.ipm.2014.10.007 Chrysouli, C., & Tefas, A. (2015). Spectral clustering and semi-supervised learning using evolving similarity graphs. Applied Soft Computing, 34, 625-637. doi:http://dx.doi.org/10.1016/j.asoc.2015.05.026 Chung, F. R. K. (1999). Spectral Graph Theory SIGACT News, 30(2), 14-16. doi:10.1145/568547.568553 Ding, C., He, X. F., & Simon, H. D. (2005). Nonnegative Lagrangian relaxation of K-means and spectral clustering. In J. Gama, R. Camacho, P. Brazdil, A. Jorge, & L. Torgo (Eds.), Machine Learning: Ecml 2005, Proceedings (Vol. 3720, pp. 530-538). Ding, C. H. Q., Xiaofeng, H., Hongyuan, Z., Ming, G., & Simon, H. D. (2001, 2001). A min-max cut algorithm for graph partitioning and data clustering. Paper presented at the Data Mining, 2001. ICDM 2001, Proceedings IEEE International Conference on. Ding, L., Wall, P., & Terzija, V. (2014). Constrained spectral clustering based controlled islanding. International Journal of Electrical Power & Energy Systems, 63, 687-694. doi:http://dx.doi.org/10.1016/j.ijepes.2014.06.016 Ding, S., Qi, B., Jia, H., Zhu, H., & Zhang, L. (2013). Research of semi-supervised spectral clustering based on constraints expansion. Neural Computing & Applications, 22, S405-S410. doi:10.1007/s00521-012-0911-8 Frias-Martinez, V., & Frias-Martinez, E. (2014). Spectral clustering for sensing urban land use using Twitter activity. Engineering Applications of Artificial Intelligence, 35, 237-245. doi:http://dx.doi.org/10.1016/j.engappai.2014.06.019 Hagen, L., & Kahng, A. (1991, 11-14 Nov. 1991). Fast spectral methods for ratio cut partitioning and clustering. Paper presented at the Computer-Aided Design, 1991. ICCAD-91. Digest of Technical Papers., 1991 IEEE International Conference on. Hamad, D., & Biela, P. (2008, 7-11 April 2008). Introduction to spectral clustering. Paper presented at the Information and Communication Technologies: From Theory to Applications, 2008. ICTTA 2008. 3rd International Conference on. Hong, X., Wang, J., & Qi, G. (2014). Comparison of spectral clustering, K-clustering and hierarchical clustering on e-nose datasets: Application to the recognition of material freshness, adulteration levels and pretreatment approaches for tomato juices. Chemometrics and Intelligent Laboratory Systems, 133, 17-24. doi:http://dx.doi.org/10.1016/j.chemolab.2014.01.017 Huang, S., Wang, H., Li, D., Yang, Y., & Li, T. (2015). Spectral co-clustering ensemble. Knowledge-Based Systems, 84, 46-55. doi:http://dx.doi.org/10.1016/j.knosys.2015.03.027 İnkaya, T. (2015). A parameter-free similarity graph for spectral clustering. Expert Systems with Applications, 42(24), 9489-9498. doi:http://dx.doi.org/10.1016/j.eswa.2015.07.074 Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM Comput. Surv., 31(3), 264-323. doi:10.1145/331499.331504 Ji, X., & Xu, W. (2006). Document clustering with prior knowledge. Paper presented at the Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval, Seattle, Washington, USA. http://delivery.acm.org/10.1145/1150000/1148241/p405-ji.pdf?ip=140.118.201.244&id=1148241&acc=ACTIVE%20SERVICE&key=AF37130DAFA4998B%2E67FA4CC52BCCA472%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=588129369&CFTOKEN=27581885&__acm__=1456975385_d9786a0fd241be7ecdbfccdd2ba89f20 Jia, H., Ding, S., Xu, X., & Nie, R. (2014). The latest research progress on spectral clustering. Neural Comput. Appl., 24(7-8), 1477-1486. doi:10.1007/s00521-013-1439-2 Jiang, H., Ren, Z., Xuan, J., & Wu, X. (2013). Extracting elite pairwise constraints for clustering. Neurocomputing, 99(0), 124-133. doi:http://dx.doi.org/10.1016/j.neucom.2012.06.013 Jiao, L. C., Shang, F., Wang, F., & Liu, Y. (2012). Fast semi-supervised clustering with enhanced spectral embedding. Pattern Recognition, 45(12), 4358-4369. doi:http://dx.doi.org/10.1016/j.patcog.2012.05.007 Khoreva, A., Galasso, F., Hein, M., & Schiele, B. (2014). Learning Must-Link Constraints for Video Segmentation Based on Spectral Clustering. In X. Jiang, J. Hornegger, & R. Koch (Eds.), Pattern Recognition, Gcpr 2014 (Vol. 8753, pp. 701-712). Klein, D., Kamvar, S. D., & Manning, C. D. (2002). From Instance-level Constraints to Space-Level Constraints: Making the Most of Prior Knowledge in Data Clustering. Paper presented at the Proceedings of the Nineteenth International Conference on Machine Learning. Krishnan, D., Fattal, R., & Szeliski, R. (2013). Efficient preconditioning of laplacian matrices for computer graphics. ACM Trans. Graph., 32(4), 1-15. doi:10.1145/2461912.2461992 Liu, D., Wang, J., & Wang, H. (2015). Short-term wind speed forecasting based on spectral clustering and optimised echo state networks. Renewable Energy, 78, 599-608. doi:http://dx.doi.org/10.1016/j.renene.2015.01.022 Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4), 395-416. doi:10.1007/s11222-007-9033-z Mcsherry, F. (2004). Spectral methods for data analysis. University of Washington. Nascimento, M. C. V., & de Carvalho, A. C. P. L. F. (2011). Spectral methods for graph clustering – A survey. European Journal of Operational Research, 211(2), 221-231. doi:http://dx.doi.org/10.1016/j.ejor.2010.08.012 Ng, A., Jordan, M., & Weiss, Y. (2001). On Spectral Clustering: Analysis and an Algorithm. Advances in Neural Information Processing, 14(2), 849-856. doi:citeulike-article-id:13599430 Nie, F., Wang, X., & Huang, H. (2014). Clustering and projected clustering with adaptive neighbors. Paper presented at the Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, New York, New York, USA. http://delivery.acm.org/10.1145/2630000/2623726/p977-nie.pdf?ip=140.118.201.244&id=2623726&acc=ACTIVE%20SERVICE&key=AF37130DAFA4998B%2E67FA4CC52BCCA472%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=623257003&CFTOKEN=59017680&__acm__=1464706643_2aa0aa10c99d1d837fc1d08cbeffcee9 Ozertem, U., Erdogmus, D., & Jenssen, R. (2008). Mean shift spectral clustering. Pattern Recognition,
|