|
Blake, C.L., & Merz, C.J. 1998. UCI Repository of machine learning databases. [2] S. Aruna et al. (2011), Knowledge based analysis of various statisti- cal tools in detecting breast cancer. [3] Pearson, K. (1901). ”On Lines and Planes of Closest Fit to Systems of Points in Space”. Philosophical Magazine. 2 (11): 559‒572. [4] T. M. Phuong, Z. Lin et R. B. Altman. Choosing SNPs using feature selectio. Proceedings / IEEE Computational Systems Bioinformatics Conference, CSB. IEEE Computational Systems Bioinformatics Con- ference, pages301-309,2005.PMID 16447987 [5] B. Duval, J.-K. Hao et J. C. Hernandez Hernandez. A memetic algo- rithm for gene selection and molecular classification of an cancer. In Proceedings of the 11th Annual conference on Genetic and evo- lutionary computation, GECCO ’09, pages 201-208, New York, NY, USA, 2009. ACM. [6] Peng, H. C.; Long, F.; Ding, C. (2005). ”Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy”. IEEE Transactions on Pattern Analysis and Machine Intelligence. 27 (8): 1226‒1238. doi: 10.1109/ TPAMI. 2005.159. PMID 16119262. Program [7] Zhao, Z., Wang, L., Liu, H. and Ye, J. (2013). On Similarity Preserv- ing Feature Selection. IEEE Transactions on Knowledge and Data Engineering, 25(3), pp.619-632. [8] Xiaofei He,Deng Cai,Partha Niyogi.NIPS’05 Proceedings of the 18th International Conference on Neural Information Processing Sys- tems.Pages 507-514 [9] Fisher, R. A. (1936). The Use Of Multiple Measurements In Taxo- nomic Problems. Annals of Eugenics, 7(2), 179-188. doi:10.1111/j. 1469-1809.1936.tb02137.x [10] Edgeworth, F. (1908). On the Probable Errors of Frequency- Constants (Contd.). Journal of the Royal Statistical Society, 71(3), 499-512. doi:10.2307/2339293 [11] Pudil, P., Novovicova, J., & Kittler, J. (1994). Floating search methods in feature selection. Pattern Recognition Letters, 15(11), 1119-1125. doi:10.1016/0167-8655(94)90127-9 [12] Lichman, M. (2013). UCI Machine Learning Repository [http:// archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. 18[13] Modi N., Ghanchi K. (2016) A Comparative Analysis of Feature Se- lection Methods and Associated Machine Learning Algorithms on Wisconsin Breast Cancer Dataset (WBCD). In: Satapathy S., Joshi A., Modi N., Pathak N. (eds) Proceedings of International Confer- ence on ICT for Sustainable Development. Advances in Intelligent Systems and Computing, vol 408. Springer, Singapore [14] Balint Antal, Andras Hajdu: An ensemble-based system for auto- matic screening of diabetic retinopathy, Knowledge-Based Systems 60 (April 2014), 20-27. [15] Ch. Rakesh, , D.N.D.Harini, , M. Bhanu Sridhar ”An Empirical Anal- ysis of Classification Algorithms for Medical Data” [16] E.Osuna, R.Freund, and F. Girosi, “Training support vector ma- chines: Application to face detection”. Proceedings of computer vision and pattern recognition, Puerto Rico pp. 130‒136.1997. [17] Mohammad Darzi, Ali AsgharLiaei, Mahdi Hosseini, HabibollahAs- ghari. ”Feature Selection for Breast Cancer Diagnosis: A Case- Based Wrapper Approach. ” (2011), World academy of Science, En- gineering and Technology 77, 2011,pp 1142-1143. [18] D. Lavanya, “Ensemble Decision Tree Classifier for Breast Cancer Data,” International Journal of Information Technology Convergence and Services, vol. 2, no. 1, pp. 17-24, Feb. 2012. [19] Boser, B. E.; Guyon, I. M.; Vapnik, V. N. (1992). ”A training algo- rithm for optimal margin classifiers”. Proceedings of the fifth an- nual workshop on Computational learning theory ‒COLT ’92. p. 144. ISBN 089791497X. doi:10.1145/130385.130401 [20] Russell, Stuart; Norvig, Peter (2003) [1995]. Artificial Intelligence: A Modern Approach (2nd ed.). Prentice Hall. ISBN 978-0137903955.
|