|
Beck, K., Beedle, M., Bennekum, A. V., Cockburn, A., Cunningham, W., Fowler, M., & Grenning, J. (2001). Manifesto for Agile Software Development. Retrieved December, 2011, from http://agilemanifesto.org/ Cavalcanti, Y. C., Da Mota Silveira Neto, P. A., Lucrédio, D., Vale, T., de Almeida, E. S., & de Lemos Meira, S. R. (2013). The bug report duplication problem: an exploratory study. Software Quality Journal, 21(1), 39-66. doi: http://dx.doi.org/10.1007/s11219-011-9164-5 Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000). CRISP-DM 1.0 Step-by-step data mining guide: SPSS Inc. Chen, X. P., Tsui, A. S., Farh, J. L., & Cheng, B. S. (2008). Empirical Methods for Research in Organization and Management. . Taiwan: HWA TAI Publishing. CMMI Product Team. (2010). CMMI for Development, Version 1.3. from http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9661 Cooper, D. R., & Schindler, P. S. (2014). Business Research Methods (12th ed.). Singapore: McGraw-Hill Higher Education. Croft, B., Metzler, D., & Strohman, T. (2009). Search Engines: Information Retrieval in Practice: Addison-Wesley Publishing Company. de Campos, L. M., Fernandez-Luna, J. M., & Huete, J. F. (2004). Bayesian networks and information retrieval: an introduction to the special issue. Information Processing & Management, 40(5), 727-733. doi: 10.1016/j.ipm.2004.03.001 Domingos, P., & Pazzani, M. (1997). On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Machine Learning, 29(2), 103-130. doi: 10.1023/a:1007413511361 Doran, M., Zimmer, V., & Rothman, M. (2011). BEYOND BIOS: EXPLORING THE MANY DIMENSIONS OF THE UNIFIED EXTENSIBLE FIRMWARE INTERFACE. Intel Technology Journal, 15(1), 8-21. Eckardt, J. R., Davis, T. L., Stern, R. A., Wong, C. S., Marymee, R. K., & Bedjanian, A. L. (2014). The Path to Software Cost Control. Defense AT&L, 43(6), 23-17. Ecker, W., Domer, R., & Müller, W. (2009). Hardware-dependent software : principles and practice. Berlin: Springer. Fern, M., #225, ndez-Delgado, Cernadas, E., Sen, #233, . . . Amorim, D. (2014). Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res., 15(1), 3133-3181. Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques: Morgan Kaufmann Publishers Inc. Issa, A. A., Abu Rub, F. A., & Thabata, F. F. (2009). Using test case patterns to estimate software development and quality management cost. Software Quality Journal, 17(3), 263-281. doi: http://dx.doi.org/10.1007/s11219-009-9076-9 Josephson, P.-E. (1998). Defects and Defect Costs in Construction - A study of seven building projects in Sweden. Kantardzic, M. (2011). Data Mining: Concepts, Models, Methods, and Algorithms: Second Edition. Kaplan, C. (1993). Defect prevention saves millions. Quality, 32(10), 51. Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Paper presented at the Proceedings of the 14th international joint conference on Artificial intelligence - Volume 2, Montreal, Quebec, Canada. Kotsiantis, S. B. (2007). Supervised Machine Learning: A Review of Classification Techniques. Paper presented at the Proceedings of the 2007 conference on Emerging Artificial Intelligence Applications in Computer Engineering: Real Word AI Systems with Applications in eHealth, HCI, Information Retrieval and Pervasive Technologies. Koumenides, C. L., & Shadbolt, N. R. (2012). Combining link and content-based information in a Bayesian inference model for entity search. Paper presented at the Proceedings of the 1st Joint International Workshop on Entity-Oriented and Semantic Search, Portland, Oregon, USA. Langley, P., Iba, W., Thompson, K., & Amer Assoc Artificial, I. (1992). AN ANALYSIS OF BAYESIAN CLASSIFIERS. Menlo Pk: Amer Assoc Artificial Intelligence. Larsen, G. (1999). Designing component-based frameworks using patterns in the UML. Association for Computing Machinery. Communications of the ACM, 42(10), 38-45. Lazić, L., & Milinković, S. (2015). Reducing software defects removal cost via design of experiments using Taguchi approach. Software Quality Journal, 23(2), 267-295. doi: 10.1007/s11219-014-9234-6 Lewis, D. D. (1998). Naive (Bayes) at forty: The independence assumption in information retrieval. In C. Nédellec & C. Rouveirol (Eds.), Machine Learning: ECML-98: 10th European Conference on Machine Learning Chemnitz, Germany, April 21–23, 1998 Proceedings (pp. 4-15). Berlin, Heidelberg: Springer Berlin Heidelberg. Li, J., Stalhane, T., Conradi, R., & Kristiansen, J. M. W. (2012). Enhancing Defect Tracking Systems to Facilitate Software Quality Improvement. IEEE software, 29(2), 59-66. doi: http://dx.doi.org/10.1109/MS.2011.24 Mannila, H. (2000). Theoretical frameworks for data mining. SIGKDD Explor. Newsl., 1(2), 30-32. doi: 10.1145/846183.846191 McCallum, A., & Nigam, K. (1998). A comparison of event models for Naive Bayes text classification. Paper presented at the In AAAI-98 Workshop on Learning for Text Categorization. Metsis, V., Androutsopoulos, I., & Paliouras, G. (2008). Spam Filtering with Naive Bayes - Which Naive Bayes? Paper presented at the In Third Conference on Email and Anti-Spam. Miner, G., Delen, D., Elder, J., Fast, A., Hill, T., & Nisbet, R. A. (2012). Practical Text Mining and Statistical Analysis for Non-Structured Text Data Applications. San Diego: Elsevier Academic Press Inc. Olson, D. L., & Shi, Y. (2006). Introduction To Business Data Mining: Mcgraw-Hill/Irwin Oshana, R., & Kraeling, M. (2013). Software Engineering of Embedded and Real-Time Systems Software Engineering for Embedded Systems (pp. 1-32). Oxford: Newnes. Poppendieck, M., & Poppendieck, T. (2003). Lean Software Development An Agile Toolkit: Addison-Wesley. Pressman, R. S. (2010). Software Engineering A Practitioner Approach. Boston, Mass: McGraw-Hill. Project Management Institute. (2013). A guide to the project management body of knowledge (PMBOK guide), fifth edition Retrieved from http://search.library.wisc.edu/catalog/WU9303188 Quinlan, J. R. (1993). C4.5: programs for machine learning: Morgan Kaufmann Publishers Inc. Quinlan, J. R. (1996). Improved use of continuous attributes in C4.5. Journal of Artificial Intelligence Research, 4, 77-90. Rish, I. (2001). An empirical study of the naive Bayes classifier. Paper presented at the IJCAI 2001 workshop on empirical methods in artificial intelligence. Rish, I., Hellerstein, J., & Thathachar, J. (2001). An analysis of data characteristics that affect naive Bayes performance. Paper presented at the ICML-01. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). Learning representations by back-propagating errors. In A. A. James & R. Edward (Eds.), Neurocomputing: foundations of research (pp. 696-699): MIT Press. Scagliarini, L., & Varone, M. (2016). Text mining vs data mining: discover the differences. Retrieved from http://www.expertsystem.com/text-mining-vs-data-mining-differences/ Schmidt, D. C. (1995). Using design patterns to develop reusable object-oriented communication software. Association for Computing Machinery. Communications of the ACM, 38(10), 65. Schulz, T., Radliński, Ł., Gorges, T., & Rosenstiel, W. (2013). Predicting the Flow of Defect Correction Effort using a Bayesian Network Model. Empirical Software Engineering, 18(3), 435-477. doi: 10.1007/s10664-011-9175-7 Schwaber, K. (2004). Agile Project Management with Scrum. Sommerville, I. (2011). Software Engineering (9th ed.). Boston, USA: Addison-Wesley. Sun, J. (2011). Why are Bug Reports Invalid? , 407-410. doi: 10.1109/icst.2011.43 Sundhari, S. S. (2011, 5-7 June 2011). A knowledge discovery using decision tree by Gini coefficient. Paper presented at the 2011 International Conference on Business, Engineering and Industrial Applications. Tan, P.-N., Steinbach, M., & Kumar, V. (2006). Introduction to Data Mining: Addison-Wesley Longman Publishing Co., Inc. Trucco, P., Cagno, E., Ruggeri, F., & Grande, O. (2008). A Bayesian Belief Network modelling of organisational factors in risk analysis: A case study in maritime transportation. Reliability Engineering & System Safety, 93(6), 845-856. doi: 10.1016/j.ress.2007.03.035 Trudeau, J. (2013). Chapter 9 - Software Reuse By Design in Embedded Systems. In R. Oshana & M. Kraeling (Eds.), Software Engineering for Embedded Systems (pp. 261-280). Oxford: Newnes. Truett, J., Cornfield, J., & Kannel, W. (1967). A multivariate analysis of the risk of coronary heart disease in Framingham. Journal of Chronic Diseases, 20(7), 511-524. doi: http://dx.doi.org/10.1016/0021-9681(67)90082-3 Wahli, U. (2004). Software configuration management a clear case for IBM Rational ClearCase and ClearQuest UCM. Research Triangle Park, N.C.: IBM. Waikato, U. o. (2017). Weka. Retrieved 4/13, 2017, from http://www.cs.waikato.ac.nz/ml/weka/downloading.html Wang, D., Wang, Q., Yang, Y., Li, Q., Wang, H., & Yuan, F. (2011). "Is It Really a Defect?" An Empirical Study on Measuring and Improving the Process of Software Defect Reporting. 434-443. doi: 10.1109/esem.2011.62 Wikipedia. (2015). Vilfredo Pareto. Retrieved 01 Feburary 2014 http://en.wikipedia.org/wiki/Vilfredo_Pareto Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining: Practical Machine Learning Tools and Techniques: Morgan Kaufmann Publishers Inc. Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., . . . Steinberg, D. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1), 1-37. doi: 10.1007/s10115-007-0114-2 Yang, C.-L., Chang, Y.-K., & Chu, C.-P. (2013). An Analysis of the Root Causes of Defects Injected into the Software by the Software Team: An Industrial Study of the Distributed Health-Care System. International Journal of Software Engineering and Knowledge Engineering, 23(09), 1269-1288. doi: 10.1142/s0218194013500393 Yang, W. (2007). Statistics (Second ed.). Taipei: Shinlou Books.
|