|
[1] K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nature Photon., vol. 10, no. 4, pp. 216-226, 2016. [2] H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, “High-performance single layered WSe2 p-FETs with chemically doped contacts,” Nano Lett., vol. 12, no. 7, pp. 3788-3792, 2012. [3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D, Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, pp. 666-669, 2004. [4] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon., vol. 4, pp. 611-622, 2010. [5] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colomba, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett., vol. 9, pp. 4359-4363, 2009. [6] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: Synthesis, properties, and applications,” Adv. Mater., vol. 22, pp. 3906-3924, 2010. [7] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano, vol. 8, pp. 1102-1120, 2014. [8] RadisavljevicB, RadenovicA, BrivioJ, GiacomettiV, and KisA, “Single-layer MoS2 transistors,” Nat Nano., vol. 6, no. 3, pp. 147-150, 2011. [9] W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, “Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials,” Nat Nano., vol. 8, no. 12, pp. 952-958, 2013. [10] W. Jaegermann and H. Tributsch, “Interfacial properties of semiconducting transition metal chalcogenides,” Progress Surf. Sci., vol. 29, pp. 1-167, 1988. [11] H. Li, J. Wu, Z. Yin, and H. Zhang, “Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets,” Acc. Chem. Res., vol. 47, pp. 1067-1075, 2014. [12] C. Feng, L. Huang, Z. Guo, and H. Liu, “Synthesis of tungsten disulfide (WS2) nanoflakes for lithium ion battery application,” Electrochem. Commun., vol. 9, pp.119-122, 2007. [13] G. Prasad, and O. N. Srivastava, “The high-efficiency (17.1%) WSe2 photo-electrochemical solar cell,” J. Phys. D: Appl. Phys., vol. 21, pp.1028-1030, 1988. [14] K. Å. V. Anderson, S. E. Kaelsson, and N. Ohmae, “Morphologies of rf sputter-deposited solid lubricants,” Vacuum, vol. 27, pp. 213-412, 1997. [15] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett., vol. 10, pp. 1271-1275, 2010. [16] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett., vol. 105, pp. 136805-1-136805-4, 2010. [17] X. Chia, A. Ambrosi, Z. Sofer, J. Luxa, and M. Pumera, “Catalytic and charge transfer properties of transition metal dichalcogenides arising from electrochemical pretreatment,” ACS Nano, vol. 9, pp. 5164-5179, 2015. [18] A. Winchester, S. Ghosh, S. Feng, A. L. Elias, T. Mallouk, M. Terrones, and S. Talapatra, “Electrochemical characterization of liquid phase exfoliated two dimensional layers of molybdenum disulfide,” ACS Appl. Mater. Interfaces., vol. 6, pp. 2125-2130, 2014. [19] C. Feng, J. Ma, H. Li, R. Zheng, Z. Guo, and H. Liu, “Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications,” Mater. Res. Bull., vol. 44, pp. 1811-1815, 2009. [20] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. T. Zahn, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2,” Opt. Express., vol. 21, no. 4, pp. 4908-4916, 2013. [21] N. Pradhan, D. Rhodes, S. Memaran, J. Poumirol, D. Smirnov, S. Talapatra, S. Feng, N. Perea-Lopez, A. Elias, and M. Terrones, “Hall and field-effect mobilities in few layered p-WSe2 field-effect transistors,” Sci. Rep., vol. 5, pp. 8979-1-8979-8, 2015. [22] B. Liu, Y. Ma, A. Zhang, L. Chen, A. N. Abbas, Y. Liu, C. Shen, H. Wan, and C. Zhou, “High-performance WSe2 field-effect transistors via controlled formation of in-plane heterojunctions,” ACS Nano, vol. 10, pp. 5153-5160, 2016. [23] Z. Zheng, T. Zhang, J. Yao, Y. Zhang, J. Xu, and G. Yang, “Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices,” Nanotechnol., vol. 27, no. 22, pp. 225501-1-225501-11, 2016. [24] A. Krotkus, “Semiconductors for terahertz photonics applications,” J. Phys. D: Appl. Phys., vol. 43, no. 27, p. 273001, 2010. [25] H. S. Loka, S. D. Benjamin, and P. W. Smith, “Optical characterization of low-temperature-grown GaAs for ultrafast all-optical switching devices,” IEEE J. Sel. Top. Quant. Electron., vol. 34, no. 8, pp. 1426-1437, 1998. [26] Y. Shen, P. Upadhya, E. Linfield, H. Beere, and A. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett., vol. 83, no. 15, pp. 3117-3119, 2003. [27] D. J. Groenendijk, M. Buscema, G. A. Steele, S. M. de Vasconcellos, R. Bratschitsch, H. S. J. van der Zant, and A. Castellanos-Gomez, “Photovoltaic and photothermoelectric effect in a double-gated WSe2 device,” Nano Lett., vol. 14, no. 10, pp. 5846-5852, 2014. [28] L. Chen, B. Liu, A. N. Abbas, Y. Ma, X. Fang, Y. Liu, and C. Zhou, “Screw-dislocation-driven growth of two-dimensional few-layer and pyramid-like WSe2 by sulfur-assisted chemical vapor deposition,” ACS Nano, vol. 8, no. 11, pp. 11543-11551, 2014. [29] M. Tosun, S. Chuang, H. Fang, A. B. Sachid, M. Hettick, Y. Lin, Y. Zeng, and A. Javey, “High-gain inverters based on WSe2 complementary field-effect transistors,” ACS nano, vol. 8, no. 5, pp. 4948-4953, 2014. [30] J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, and W. Yao, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 pn junctions,” Nature Nanotech., vol. 9, no. 4, pp. 268-272, 2014. [31] A. K. Rai, R. S. Bhattacharya, J. S. Zabinski, and K. Miyoshi, “A comparison of the wear life of as-deposited and ion-irradiated WS2 coating,” Surf. Coat. Technol., vol. 92, pp. 120-128, 1997. [32] A. Jäger-Waldau, M. Ch. Lux-Steiner, G. Jäger-Waldau, and E. Bucher, “WS2 thin films prepared by sulphurization,” Appl. Surf. Sci. vol.70-71, pp. 731-736, 1993. [33] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nature Nanotech., vol. 7, pp. 699-712, 2012. [34] J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, and R. J. Smith, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science, vol. 331, no. 6017, pp. 568-571, 2011. [35] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett., vol. 11, no. 12, pp. 5111-5116, 2011. [36] Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, and L. J. Li, “Synthesis of large‐area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater., vol. 24, no. 17, pp. 2320-2325, 2012. [37] Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, and J. Lou, “Large‐area vapor‐phase growth and characterization of MoS2 atomic layers on a SiO2 substrate,” Small, vol. 8, no. 7, pp. 966-971, 2012. [38] K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, and H. Zhang, “Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates,” Nano Lett., vol. 12, no. 3, pp. 1538-1544, 2012. [39] M. Fontana, T. Deppe, A. K. Boyd, M. Rinzan, A. Y. Liu, M. Paranjape, and P. Barbara, “Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions,” Sci. Rep., vol. 3, pp. 1634-1-1634-5, 2012. [40] M. Buscema, M. Barkelid, V. Zwiller, H. S. J. van der Zant, G. A. Steele, and A. Castellanos-Gomez, “Large and tunable photothermoelectric effect in single-layer MoS2,” Nano Lett., vol. 13, pp. 358-363, 2013. [41] Y. Zhang, H. Li, L. Wang, H. Wang, X. Xie, S. L. Zhang, R. Liu, and Z. J. Qiu, “Photothermoelectric and photovoltaic effects both present in MoS2,” Sci. Rep., vol. 5, pp.7938-1-7938-7, 2015. [42] M. M. Furchi, D. K. Polyushkin, A. Pospischil, and T. Mueller, “Mechanisms of photoconductivity in atomically thin MoS2,” Nano Lett., vol. 14, no. 11, pp. 6165-6170, 2014. [43] M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, “Photocurrent generation with two-dimensional van der Waals semiconductors,” Chem. Soc. Rev., vol. 44, pp. 3691-3718, 2015. [44] M. Buscema, M. Barkelid, V. Zwiller, H. S. J. van der Zant, G. A. Steele, and A. Castellanos-Gomez, “Large and tunable photothermoelectric effect in single-layer MoS2,” Nano Lett., vol. 13, pp. 358-363, 2013. [45] B. C. St-Antoine, D. Ménard, and R. Martel, “Photothermoelectric effects in single-walled carbon nanotube films: Reinterpreting scanning photocurrent experiments,” Nano Res., vol. 5, no. 2, pp. 73-81, 2012. [46] M. Barkelid and V. Zwiller, “Photocurrent generation in semiconducting and metallic carbon nanotubes,” Nat Photon., vol. 8, no. 1, pp. 47-51, 2014. [47] J. Hass, W. A. de Heer, and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene,” J. Phys., vol. 20, pp. 323202-323228, 2008. [48] D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, “Properties of graphene: a theoretical perspective,” Adv. in Phys., vol. 59, pp. 261-482, 2010. [49] S. Yugo, T. Kanai, T. Kimura, and T. Muto, “Generation of diamond nuclei by electric field in plasma chemical vapor deposition,” Appl. Phys. Lett., vol. 58, no. 10, pp. 1036-1038, 1991. [50] A. Bablich, S. Kataria, and M. C. Lemme, “Graphene and two-dimensional materials for optoelectronic applications,” Electronics, vol. 5, no. 1, p. 13, 2016. [51] J. R. Szczech and S. Jin, “Epitaxially-hyperbranched FeSi nanowires exhibiting merohedral twinning,” J. Mater. Chem., vol. 20, no. 7, pp. 1375-1382, 2010. [52] L. Niu, K. Li, H. Zhen, Y. S. Chui, W. Zhang, F. Yan, and Z. Zheng, “Salt‐assisted high‐throughput synthesis of single‐and few‐layer transition metal dichalcogenides and their application in organic solar cells,” Small, vol. 10, no. 22, pp. 4651-4657, 2014. [53] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. T. Zahn, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2,” Opt. Express., vol. 21, no. 4, pp. 4908-4916, 2013. [54] W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono-and few-layer sheets of WS2 and WSe2,” Nanoscale, vol. 5, no. 20, pp. 9677-9683, 2013. [55] H. Shi, R. Yan, S. Bertolazzi, J. Brivio, B. Gao, A. Kis, D. Jena, H. G. Xing, and L. Huang, “Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals,” ACS Nano, vol. 7, no. 2, pp. 1072-1080, 2013. [56] J. Huang, T. B. Hoang, and M. H. Mikkelsen, “Probing the origin of excitonic states in monolayer WSe2,” Sci. Rep., vol. 6, p. 22414, 2016. [57] G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, “Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2,” Phys. Rev., vol. 90, no. 7, p. 075413, 2014. [58] T. Yan, X. Qiao, X. Liu, P. Tan, and X. Zhang, “Photoluminescence properties and exciton dynamics in monolayer WSe2,” Appl. Phys. Lett., vol. 105, no. 10, p. 101901, 2014. [59] Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica, vol. 34, pp. 149-154, 1967. [60] A. Arora, M. Koperski, K. Nogajewski, J. Marcus, C. Faugeras, and M. Potemski, “Excitonic resonances in thin films of WSe2: from monolayer to bulk material,” Nanoscale, vol. 7, no. 23, pp. 10421-10429, 2015. [61] Y. Chen, J. Xi, D. O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. Shuai, Y. S. Huang, and L. Xie, “Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys,” ACS Nano, vol. 7, pp. 4610-4616, 2013. [62] Z. Yin, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano, vol. 6, pp. 74-80, 2012. [63] H. M. Li, D. Y. Lee, M. S. Choi, D. Qu, X. Liu, C. H. Ra, and W. J. Yoo, “Metal-semiconductor barrier modulation for high photoresponse in transition metal dichalcogenide field effect transistors,” Sci. Rep., vol. 4, pp. 4041-1-4041-7, 2014. [64] W. Zhang, M.-H. Chiu, C.-H. Chen, W. Chen, L.-J. Li, and A. T. S. Wee, “Role of metal contacts in high-performance phototransistors based on WSe2 monolayers,” ACS Nano, vol. 8, no. 8, pp. 8653-8661, 2014. [65] N. Dong, Y. Li, Y. Feng, S. Zhang, X. Zhang, C. Chang, J. Fan, L. Zhang, and J. Wang, “Optical limiting and theoretical modelling of layered transition metal dichalcogenide nanosheets,” Sci. Rep., vol. 5, pp. 14646-1-14646-10, 2015.
|