|
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field in atomically thin carbon films," Science, vol. 306, pp. 666-669, 2004. [2] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, "Two-dimensional atomic crystals," Proc. Natl. Acad. Sci. U. S. A., vol. 102, pp. 10451-10453, 2005. [3] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, "Superior thermal conductivity of single-layer graphene," Nano Lett., vol. 8, pp. 902-907, 2008. [4] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene," Solid State Commun., vol. 146, pp. 351-355, 2008. [5] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colomba, and R. S. Ruoff, "Transfer of large-area graphene films for high-performance transparent conductive electrodes," Nano Lett., vol. 9, pp. 4359-4363, 2009. [6] V. M. Pereira and A. H. Castro Neto, "Strain engineering of graphene's electronic structure," Phys. Rev. Lett., vol. 103, 2009. [7] F. Schwierz, "Graphene transistors," Nat. Nanotechnol., vol. 5, pp. 487-496, 2010. [8] J. K. Wassei and R. B. Kaner, "Graphene, a promising transparent conductor," Mater. Today, vol. 13, pp. 52-59, 2010. [9] D. W. Zhang, X. D. Li, H. B. Li, S. Chen, Z. Sun, X. J. Yin, and S. M. Huang, "Graphene-based counter electrode for dye-sensitized solar cells," Carbon, vol. 49, pp. 5382-5388, 2011. [10] W. Yuan and G. Shi, "Graphene-based gas sensors," J. Mater. Chem. A, vol. 1, pp. 10078-10091, 2013. [11] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, "Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties," Nano Lett., vol. 9, pp. 1752-1758, 2009. [12] H. Liu, Y. Liu, and D. Zhu, "Chemical doping of graphene," J. Mater. Chem., vol. 21, pp. 3335-3345, 2011. [13] R. Geick, C. H. Perry, and G. Rupprecht, "Normal modes in hexagonal boron nitride," Phys. Rev., vol. 146, pp. 543-547, 1966. [14] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, "Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides," ACS Nano, vol. 8, pp. 1102-1120, 2014. [15] A. K. Geim and I. V. Grigorieva, "Van der Waals heterostructures," Nature, vol. 499, pp. 419-425, 2013. [16] L. F. Mattheiss, "Band structures of transition-metal-dichalcogenide layer compounds," Phys. Rev. B, vol. 8, pp. 3719-3740, 1973. [17] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nat. Nanotechnol., vol. 7, pp. 699-712, 2012. [18] W. Jaegermann and H. Tributsch, "Interfacial properties of semiconducting transition metal chalcogenides," Prog. Surf. Sci., vol. 29, pp. 1-167, 1988. [19] Z. Wang, Q. Su, G. Q. Yin, J. Shi, H. Deng, J. Guan, M. P. Wu, Y. L. Zhou, H. L. Lou, and Y. Q. Fu, "Structure and electronic properties of transition metal dichalcogenide MX2 (M = Mo, W, Nb; X = S, Se) monolayers with grain boundaries," Mater. Chem. Phys., vol. 147, pp. 1068-1073, 2014. [20] H. Li, J. Wu, Z. Yin, and H. Zhang, "Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets," Acc. Chem. Res., vol. 47, pp. 1067-1075, 2014. [21] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nat. Nanotechnol., vol. 6, pp. 147-150, 2011. [22] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, "Emerging photoluminescence in monolayer MoS2," Nano Lett., vol. 10, pp. 1271-1275, 2010. [23] A. F. Wells, "Structures based on the 3-connected net 103-b," J. Solid State Chem., vol. 54, pp. 378-388, 1984. [24] A. Kuc, N. Zibouche, and T. Heine, "Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2," Phys. Rev. B, vol. 83, 2011. [25] C. Zhou, X. Wang, S. Raju, Z. Lin, D. Villaroman, B. Huang, H. L. W. Chan, M. Chan, and Y. Chai, "Low voltage and high on/off ratio field-effect transistors based on CVD MoS2 and ultra high-k gate dielectric PZT," Nanoscale, vol. 7, pp. 8695-8700, 2015. [26] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, "Single-layer MoS2 phototransistors," ACS Nano, vol. 6, pp. 74-80, 2012. [27] M.-L. Tsai, S.-H. Su, J.-K. Chang, D.-S. Tsai, C.-H. Chen, C.-I. Wu, L.-J. Li, L.-J. Chen, and J.-H. He, "Monolayer MoS2 heterojunction solar cells," ACS Nano, vol. 8, pp. 8317-8322, 2014. [28] Z. Yin, X. Zhang, Y. Cai, J. Chen, J. I. Wong, Y. Y. Tay, J. Chai, J. Wu, Z. Zeng, B. Zheng, H. Y. Yang, and H. Zhang, "Preparation of MoS2-MoO3 hybrid nanomaterials for light-emitting diodes," Angew. Chem. Int. Edit., vol. 53, pp. 12560-12565, 2014. [29] A. Ayari, E. Cobas, O. Ogundadegbe, and M. S. Fuhrer, "Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides," J. Appl. Phys., vol. 101, 2007. [30] S. Bertolazzi, D. Krasnozhon, and A. Kis, "Nonvolatile memory cells based on MoS2/graphene heterostructures," ACS Nano, vol. 7, pp. 3246-3252, 2013. [31] X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, "Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures," Nat. Nanotechnol., vol. 9, pp. 682-686, 2014. [32] W.-J. Su, H.-C. Chang, Y.-T. Shih, Y.-P. Wang, H.-P. Hsu, Y.-S. Huang, and K.-Y. Lee, "Two dimensional MoS2/graphene p-n heterojunction diode: fabrication and electronic characteristics," J. Alloys Compd., vol. 671, pp. 276-282, 2016. [33] M. Chen, H. Nam, S. Wi, L. Ji, X. Ren, L. Bian, S. Lu, and X. Liang, "Stable few-layer MoS2 rectifying diodes formed by plasma-assisted doping," Appl. Phys. Lett., vol. 103, 2013. [34] A. Nipane, D. Karmakar, N. Kaushik, S. Karande, and S. Lodha, "Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation," ACS Nano, vol. 10, pp. 2128-2137, 2016. [35] B. K. Miremadi, R. C. Singh, S. R. Morrison, and K. Colbow, "A highly sensitive and selective hydrogen gas sensor from thick oriented films of MoS2," Appl. Phys. A-Mater., vol. 63, pp. 271-275, 1996. [36] C. Feng, J. Ma, H. Li, R. Zeng, Z. Guo, and H. Liu, "Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications," Mater. Res. Bull., vol. 44, pp. 1811-1815, 2009. [37] Y. Yoon, K. Ganapathi, and S. Salahuddin, "How good can monolayer MoS2 transistors be?," Nano Lett., vol. 11, pp. 3768-3773, 2011. [38] Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J.-T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, "Synthesis of large-area MoS2 atomic layers with chemical vapor deposition," Adv. Mater., vol. 24, pp. 2320-2325, 2012. [39] A. Jäger-Waldau, M. C. Lux-Steiner, G. Jäger-Waldau, and E. Bucher, "WS2 thin films prepared by sulphurization," Appl. Surf. Sci., vol. 70-71, pp. 731-736, 1993. [40] S. Wu, C. Huang, G. Aivazian, J. S. Ross, D. H. Cobden, and X. Xu, "Vapor-solid growth of high optical quality MoS2 monolayers with near-unity valley polarization," ACS Nano, vol. 7, pp. 2768-2772, 2013. [41] L. Liu, H. Qiu, J. Wang, G. Xu, and L. Jiao, "Atomic MoS2 monolayers synthesized from a metal-organic complex by chemical vapor deposition," Nanoscale, vol. 8, pp. 4486-4490, 2016. [42] R. Vaidya, M. Dave, S. S. Patel, S. G. Patel, and A. R. Jani, "Growth of molybdenum disulphide using iodine as transport material," Pramana - J. Phys., vol. 63, pp. 611-616, 2004. [43] M. Binnewies, R. Glaum, M. Schmidt, and P. Schmidt, "Chemical vapor transport reactions - a historical review," Z. Anorg. Allg. Chem., vol. 639, pp. 219-229, 2013. [44] A. Ubaldini, J. Jacimovic, N. Ubrig, and E. Giannini, "Chloride-driven chemical vapor transport method for crystal growth of transition metal dichalcogenides," Cryst. Growth Des., vol. 13, pp. 4453-4459, 2013. [45] S. Das, J. A. Robinson, M. Dubey, H. Terrones, and M. Terrones, "Beyond graphene: progress in novel two-dimensional materials and van der Waals solids," in Annu. Rev. Mater. Res. vol. 45, ed, 2015, pp. 1-27. [46] M. Riordan and L. Hoddeson, Crystal fire: the invention of the transistor and the birth of the information age: WW Norton & Company, 1997. [47] J. R. Hook and H. E. Hall, "Orbital dynamics of 3He-A in the presence of a heat flow and a magnetic field," J. Phys. C Solid State, vol. 12, pp. 783-800, 1979. [48] D. A. Neamen, Semiconductor physics and devices vol. 3: McGraw-hill New York, 1997. [49] A.-M. Hu, L.-L. Wang, W.-Z. Xiao, G. Xiao, and Q.-Y. Rong, "Electronic structures and magnetic properties in nonmetallic element substituted MoS2 monolayer," Comp. Mater. Sci., vol. 107, pp. 72-78, 2015. [50] X. Lin and J. Ni, "Charge and magnetic states of Mn-, Fe-, and Co-doped monolayer MoS2," J. Appl. Phys., vol. 116, 2014. [51] Q. Yue, S. Chang, S. Qin, and J. Li, "Functionalization of monolayer MoS2 by substitutional doping: a first-principles study," Phys. Lett. A., vol. 377, pp. 1362-1367, 2013. [52] L.-J. Kong, G.-H. Liu, and L. Qiang, "Electronic and optical properties of O-doped monolayer MoS2," Comp. Mater. Sci., vol. 111, pp. 416-423, 2016. [53] G.-P. Neupane, K.-P. Dhakal, H. Kim, J. Lee, M.-S. Kim, G. Han, Y.-H. Lee, and J. Kim, "Formation of nanosized monolayer MoS2 by oxygen-assisted thinning of multilayer MoS2," J. Appl. Phys., vol. 120, 2016. [54] N. Kang, H. P. Paudel, M. N. Leuenberger, L. Tetard, and S. I. Khondaker, "Photoluminescence quenching in single-layer MoS2 via oxygen plasma treatment," J. Phys. Chem. C, vol. 118, pp. 21258-21263, 2014. [55] S. Nakamura and S. F. Chichibu, Introduction to nitride semiconductor blue lasers and light emitting diodes: CRC Press, 2000. [56] K. Cho, M. Min, T.-Y. Kim, H. Jeong, J. Pak, J.-K. Kim, J. Jang, S.-J. Yun, Y.-H. Lee, W.-K. Hong, and T. Lee, "Electrical and optical characterization of MoS2 with sulfur vacancy passivation by treatment with alkanethiol molecules," ACS Nano, vol. 9, pp. 8044-8053, 2015. [57] R. Addou, L. Colombo, and R. M. Wallace, "Surface defects on natural MoS2," ACS Appl. Mater. Interfaces, vol. 7, pp. 11921-11929, 2015. [58] M. Yamamoto, T. L. Einstein, M. S. Fuhrer, and W. G. Cullen, "Anisotropic etching of atomically thin MoS2," J. Phys. Chem. C, vol. 117, pp. 25643-25649, 2013. [59] N. Choudhary, M. R. Islam, N. Kang, L. Tetard, Y. Jung, and S. I. Khondaker, "Two-dimensional lateral heterojunction through bandgap engineering of MoS2 via oxygen plasma," J. Phys. - Condens. Matt., vol. 28, 2016. [60] S.-Y. Lee, U.-J. Kim, J. Chung, H. Nam, H.-Y. Jeong, G.-H. Han, H. Kim, H.-M. Oh, H. Lee, H. Kim, Y.-G. Roh, J. Kim, S.-W. Hwang, Y. Park, and Y.-H. Lee, "Large work function modulation of monolayer MoS2 by ambient gases," ACS Nano, vol. 10, pp. 6100-6107, 2016. [61] H.-F. Liu, S.-L. Wong, and D.-Z. Chi, "CVD growth of MoS2-based two-dimensional materials," Chem. Vap. Deposition, vol. 21, pp. 241-259, 2015. [62] L. Tonks and I. Langmuir, "A general theory of the plasma of an arc," Phys. Rev., vol. 34, pp. 876-922, 1929. [63] D. Dumcenco, K. Chen, Y. Wang, Y. Huang, and K. Tiong, "Raman study of 2H-Mo1−xWxS2 layered mixed crystals," J. Alloys Compd., vol. 506, pp. 940-943, 2010. [64] X. Huang, Z. Zeng, and H. Zhang, "Metal dichalcogenide nanosheets: preparation, properties and applications," Chem. Soc. Rev., vol. 42, pp. 1934-1946, 2013. [65] X. Wang, H. Feng, Y. Wu, and L. Jiao, "Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition," J. Am. Chem. Soc., vol. 135, pp. 5304-5307, 2013. [66] Y. Mao, W. Li, X. Sun, Y. Ma, J. Xia, Y. Zhao, X. Lu, J. Gan, Z. Liu, and J. Chen, "Room-temperature ferromagnetism in hierarchically branched MoO3 nanostructures," Cryst. Eng. Comm., vol. 14, pp. 1419-1424, 2012. [67] B. C. Windom, W. Sawyer, and D. W. Hahn, "A raman spectroscopic study of MoS2 and MoO3: applications to tribological systems," Tribol. Lett., vol. 42, pp. 301-310, 2011. [68] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, "Anomalous lattice vibrations of single-and few-layer MoS2," ACS Nano, vol. 4, pp. 2695-2700, 2010. [69] S. Mouri, Y. Miyauchi, and K. Matsuda, "Tunable photoluminescence of monolayer MoS2 via chemical doping," Nano Lett., vol. 13, pp. 5944-5948, 2013. [70] K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, and L.-J. Li, "Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates," Nano Lett., vol. 12, pp. 1538-1544, 2012. [71] K. Anunobi, "External localised corrosion of offshore topside riser system," in Society of Petroleum Engineers - SPE International Conference and Exhibition on Oilfield Corrosion 2012, 2012, pp. 287-295. [72] D. Ganta, S. Sinha, and R. T. Haasch, "2-D material molybdenum disulfide analyzed by XPS," Surf. Sci. Spectra, vol. 21, pp. 19-27, 2014. [73] N. M. D. Brown, N. Cui, and A. McKinley, "An XPS study of the surface modification of natural MoS2 following treatment in an RF-oxygen plasma," Appl. Surf. Sci., vol. 134, pp. 11-21, 1998. [74] J. R. Lince and P. P. Frantz, "Anisotropic oxidation of MoS2 crystallites studied by angle-resolved x-ray photoelectron spectroscopy," Tribol. Lett., vol. 9, pp. 211-218, 2001. [75] B. C. Windom, W. G. Sawyer, and D. W. Hahn, "A raman spectroscopic study of MoS2 and MoO3: applications to tribological systems," Tribol. Lett., vol. 42, pp. 301-310, 2011. [76] Y. He, J. Zhang, D. Li, J. Wang, Q. Wu, Y. Wei, L. Zhang, J. Wang, P. Liu, Q. Li, S. Fan, and K. Jiang, "Evaluating bandgap distributions of carbon nanotubes via scanning electron microscopy imaging of the Schottky barriers," Nano Lett., vol. 13, pp. 5556-5562, 2013. [77] M. R. Islam, N. Kang, U. Bhanu, H. P. Paudel, M. Erementchouk, L. Tetard, M. N. Leuenberger, and S. I. Khondaker, "Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma," Nanoscale, vol. 6, pp. 10033-10039, 2014. [78] E. A. Gulbransen, K. F. Andrew, and F. A. Brassart, "Oxidation of molybdenum 550° to 1700°C," J. Electrochem. Soc., vol. 110, pp. 952-959, 1963. [79] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Phys. Rev. Lett., vol. 77, pp. 3865-3868, 1996.
|