跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 22:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林家任
研究生(外文):Jia-Ren
論文名稱:在3T磁場強度下使用功能性磁振頻譜觀察看影片時大腦代謝物濃度變化
論文名稱(外文):Investigation of metabolic changes during watching movie using fMRS at 3T system
指導教授:林益如林益如引用關係
指導教授(外文):Yi-Ru Lin
口試委員:莊子肇黃騰毅蔡尚岳林益如
口試委員(外文):Tzu-Chao ChuangTeng-Yi HuangSHANG-YUEH TSAIYi-Ru Lin
口試日期:2017-07-13
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:36
中文關鍵詞:功能性磁振頻譜3T儀器視覺刺激視覺區
外文關鍵詞:fMRS3 Tesla systemvisual stimulationvisual cortex
相關次數:
  • 被引用被引用:1
  • 點閱點閱:108
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
磁共振頻譜(MRS)提供一種非侵入性的方式來量測大腦內代謝物濃度含量的變化。而功能性磁共振頻譜(fMRS)則是針對大腦接受刺激時(視覺、觸覺…等)腦中代謝物濃度的變化。近幾年的研究指出,在7T磁場強度的MRI儀器下進行視覺刺激的fMRS實驗,代謝物會有顯著的變化。在這些研究中發現,Glu以及Lac在接受視覺刺激時,分別增加了2%以及17%。我們認為在3T磁場強度下的儀器進行fMRS實驗,也有機會可以觀察到代謝物的濃度變化。我們選定卓別林的喜劇電影當作視覺刺激的材料,觀察區域為視覺區,實驗的內容主要是由兩段從影片中剪輯出來的片段中間穿插休息時間所組成,比較影片播放區間以及未播放區間的變化。初步的結果表明,代謝物的濃度在接受視覺刺激時沒有發現顯著的變化,但經過更進一步的分析後我認為,如果調整、更換實驗的第二段影片,仍然有機會在3T的系統下觀察到fMRS的濃度變化。
Functional magnetic resonance spectroscopy of brain has been used to study brain metabolism during activation. Recent studies have reported metabolic change during visual and motor stimuli using MRS at 7 Tesla MRI system. In these studies, glutamate (Glu) and lactate (Lac) have been found to increase by 2% and 17% during stimuli using block design in fMRS experiments. We think there is potential to perform fMRS experiments at 3 Tesla system. Chaplin’s comedy movies were selected as stimuli material and voxel is located at visual cortex. Visual stimuli were given with block design consisting of 1 baseline section, 2 black-white movie clips sections and 2 rest sections. Our preliminary results showed that concentration of metabolites do not have significant change. But in further analysis show that it still has chance to find the concentration change using fMRS in 3 Tesla system if experiment is adjusted.
Chapter1. Introduction
1.1 Background
1.2 fMRS
1.3 Metabolites
1.4 Motivation
Chapter2. Materials and Method
2.1 Subjects
2.2 Data Acquisition
2.3 Experiments Design
2.4 Post-processing
2.5 Status statistical analysis
Chapter3. Results
Chapter4. Discussions
Chapter5. Conclusions & Future Works
Chapter6. References
Appendix
1. Lin Y, Stephenson MC, Xin L, Napolitano A, Morris PG. Investigating the metabolic changes due to visual stimulation using functional proton magnetic resonance spectroscopy at 7 T. Journal of Cerebral Blood Flow & Metabolism 2012;32(8):1484-1495.
2. Wang W-C. Reproducibility of glutamate and glutamine quantification in the cingulate cortex using Proton Echo Planar Spectroscopic Imaging. National Taiwan Univversity of Science and Technology, Master Thesis, 2012.
3. Mangia S, Tkac I, Gruetter R, Van de Moortele PF, Maraviglia B, Ugurbil K. Sustained neuronal activation raises oxidative metabolism to a new steady-state level: evidence from 1H NMR spectroscopy in the human visual cortex. J Cereb Blood Flow Metab 2007;27(5):1055-1063.
4. Schaller B, Xin L, O'Brien K, Magill AW, Gruetter R. Are glutamate and lactate increases ubiquitous to physiological activation? A 1 H functional MR spectroscopy study during motor activation in human brain at 7Tesla. Neuroimage 2014;93:138-145.
5. Provencher S. LCModel & LCMgui user’s manual. LCModel Version 2011.
6. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002;15(1):273-289.
7. Kauttonen J, Hlushchuk Y, Tikka P. Optimizing methods for linking cinematic features to fMRI data. Neuroimage 2015;110:136-148.
8. Hasson U, Furman O, Clark D, Dudai Y, Davachi L. Enhanced intersubject correlations during movie viewing correlate with successful episodic encoding. Neuron 2008;57(3):452-462.
9. Lahnakoski JM, Glerean E, Jääskeläinen IP, Hyönä J, Hari R, Sams M, Nummenmaa L. Synchronous brain activity across individuals underlies shared psychological perspectives. NeuroImage 2014;100:316-324.
10. Jääskeläinen IP, Pajula J, Tohka J, Lee H-J, Kuo W-J, Lin F-H. Brain hemodynamic activity during viewing and re-viewing of comedy movies explained by experienced humor. Scientific reports 2016;6.
11. PENG P. Toolbox for Automatic Localization of Volume of Interest in Single Voxel MRS. National Taiwan Univversity of Science and Technology, Master Thesis, 2016.
12. Gong Y-J. Automatic position of MR spectroscopy voxels. National Taiwan Univversity of Science and Technology, Master Thesis, 2015.
13. Liang C-L. Investigating the effect of phase cycling schemes on the measurement of GABA using MEGA-PRESS. National Taiwan Univversity of Science and Technology, Master Thesis, 2016.
14. Gasparovic C, Song T, Devier D, Bockholt HJ, Caprihan A, Mullins PG, Posse S, Jung RE, Morrison LA. Use of tissue water as a concentration reference for proton spectroscopic imaging. Magnetic resonance in medicine 2006;55(6):1219-1226.
15. Ashburner J, Barnes G, Chen C, Daunizeau J, Flandin G, Friston K, Gitelman D, Kiebel S, Kilner J, Litvak V. SPM8 manual. Functional Imaging Laboratory, Institute of Neurology 2008.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top